Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: a longitudinal study

G Borst, A Cachia, J Vidal, G Simon, C Fischer, A Pineau, N Poirel, J-F Mangin, O Houdé, G Borst, A Cachia, J Vidal, G Simon, C Fischer, A Pineau, N Poirel, J-F Mangin, O Houdé

Abstract

Difficulties in cognitive control including inhibitory control (IC) are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC) is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n=7) had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n=11). The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern - a qualitative structural characteristic of the brain not affected by maturation and learning after birth - partially explains IC efficiency during childhood.

Keywords: Anterior cingulate cortex; Brain imaging; Cognitive control; Inhibitory control; Stroop; Sulcal pattern.

Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
ACC sulcal pattern classification and assessment of IC efficiency. The figure depicts the two types of ACC sulcal patterns (sulci are depicted in blue on the gray/white interface): ‘single’ type when only the cingulate sulcus was present and ‘double parallel’ type when a paracingulate sulcus ran parallel to the cingulate sulcus (A). The figure also depicts examples of stimuli in the conflict and no-conflict conditions of the Animal Stroop task (B) and the Color-Word Stroop task (C). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2
Fig. 2
ACC sulcal pattern of each child. 3-D mesh-based reconstructions of the cingulate sulcus (turquoise) and PCS (blue) of each child at age 5 in the left (top) and the right (bottom) hemispheres. Other sulci of the cortex are depicted in light gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3
Fig. 3
Interindividual variability of the ACC sulcal pattern of the children (A) and IC efficiency in the children with asymmetrical and symmetrical ACC sulcal patterns at age 5 (B) and at age 9 (C). (A) 3-D mesh-based reconstructions of the cingulate sulcus (turquoise) and PCS (blue) of each child at age 5 are depicted on the same gray/white interface after being linearly aligned in a common referential (MNI-space). (B) and (C) Mean Stroop interference scores at age 5 (on the Animal Stroop task) and at age 9 (on the Color-Word Stroop task) in children with symmetrical (single or double parallel type in both hemispheres; n = 11) and asymmetrical (single type in the right hemisphere and double type in the left hemisphere or vice versa; n = 7) ACC sulcal patterns. Children with asymmetrical ACC sulcal patterns at age 5 had lower Stroop interference scores than children with symmetrical ACC sulcal patterns at age 5, t(16) = 3.07, p = .0004, d = 1.49, and at age 9, t(16) = 2.85, p = .006, d = 1.38. Error bar denotes standard error of the mean (SEM); *p < .05. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

References

    1. Amiez C., Neveu R., Warrot D., Petrides M., Knoblauch K., Procyk E. The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. J. Neurosci. 2013;33(5):2217–2228.
    1. Artiges E., Martelli C., Naccache L., Bartres-Faz D., Leprovost J.B., Viard A., Paillere-Martinot M.L., Dehaene S., Martinot J.L. Paracingulate sulcus morphology and fMRI activation detection in schizophrenia patients. Schizophr. Res. 2006;82:143–151.
    1. Botvinick M.M. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn. Affect. Behav. Neurosci. 2007;7:356–366.
    1. Botvinick M.M., Braver T.S., Barch D.M., Carter C.S., Cohen J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001;108:624–652.
    1. Brown W.S., Thrasher E.D., Paul L.K. Interhemispheric Stroop effects in partial and complete agenesis of the corpus callosum. J. Int. Neuropsychol. Soc. 2001;7:302–311.
    1. Cachia A., Borst G., Vidal J., Pineau A., Fisher C., Mangin J.-F., Houdé O. The shape of the ACC contributes to cognitive control efficiency in preschoolers. J. Cogn. Neurosci. 2014;26:96–106.
    1. Crosson B., Sadek J.R., Bobholz J.A., Gökçay D., Mohr C.M., Leonard C.M., Maron L., Auerbach E.J., Browd S.R., Freeman A.J., Briggs R.W. Activity in the paracingulate and cingulate sulci during word generation: an fMRI study of functional anatomy. Cereb. Cortex. 1999;9:307–316.
    1. Dale A.M., Fischl B., Sereno M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–194.
    1. Diamond A., Barnett W.S., Thomas J., Munro S. Preschool program improves cognitive control. Science. 2007;318:1387–1388.
    1. Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427:311–312.
    1. Draganski B., Gaser C., Kempermann G., Kuhn H.G., Winkler J., Buchel C., May A. Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 2006;26:6314–6317.
    1. Egner T., Hirsch J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat. Neurosci. 2005;8:1784–1790.
    1. Fischl B., Dale A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 2000;97:11050–11055.
    1. Fischl B., Sereno M.I., Dale A.M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999;9:195–207.
    1. Fischl B., van der Kouwe A., Destrieux C., Halgren E., Segonne F., Salat D.H., Busa E., Seidman L.J., Goldstein J., Kennedy D., Caviness V., Makris N., Rosen B., Dale A.M. Automatically parcellating the human cerebral cortex. Cereb. Cortex. 2004;14:11–22.
    1. Fischl B., Salat D.H., Busa E., Albert M., Dieterich M., Haselgrove C., van der Kouwe A., Killiany R., Kennedy D., Klaveness S., Montillo A., Makris N., Rosen B., Dale A.M. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–355.
    1. Fjell A.M., Walhovd K.B., Brown T.T., Kuperman J.M., Chung Y., Hagler D.J., Jr., Venkatraman V., Roddey J.C., Erhart M., McCabe C., Akshoomoff N., Amaral D.G., Bloss C.S., Libiger O., Darst B.F., Schork N.J., Casey B.J., Chang L., Ernst T.M., Gruen J.R., Kaufmann W.E., Kenet T., Frazier J., Murray S.S., Sowell E.R., van Zijl P., Mostofsky S., Jernigan T.L., Dale A.M. Multimodal imaging of the self-regulating developing brain. Proc. Natl. Acad. Sci. U. S. A. 2012;109:19620–19625.
    1. Fornito A., Whittle S., Wood S.J., Velakoulis D., Pantelis C., Yucel M. The influence of sulcal variability on morphometry of the human anterior cingulate and paracingulate cortex. Neuroimage. 2006;33:843–854.
    1. Fornito A., Wood S.J., Whittle S., Fuller J., Adamson C., Saling M.M., Velakoulis D., Pantelis C., Yucel M. Variability of the paracingulate sulcus and morphometry of the medial frontal cortex: associations with cortical thickness, surface area, volume, and sulcal depth. Hum. Brain Mapp. 2008;29:222–236.
    1. Fornito A., Yucel M., Wood S., Stuart G.W., Buchanan J.A., Proffitt T., Anderson V., Velakoulis D., Pantelis C. Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. Cereb. Cortex. 2004;14:424–431.
    1. Fornito A., Yucel M., Wood S.J., Proffitt T., McGorry P.D., Velakoulis D., Pantelis C. Morphology of the paracingulate sulcus and executive cognition in schizophrenia. Schizophr. Res. 2006;88:192–197.
    1. Giedd J.N., Lalonde F.M., Celano M.J., White S.L., Wallace G.L., Lee N.R., Lenroot R.K. Anatomical brain magnetic resonance imaging of typically developing children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry. 2009;48:465–470.
    1. Goldstein R.Z., Volkow N.D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011;12:652–669.
    1. Ghosh S.S., Kakunoori S., Augustinack J., Nieto-Castanon A., Kovel-man I., Gaab N., Christodoulou J.A. Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. Neuroimage. 2010;53:85–93.
    1. Hilgetag C.C., Barbas H. Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol. 2006;2:e22.
    1. Huster R.J., Westerhausen R., Kreuder F., Schweiger E., Wittling W. Morphologic asymmetry of the human anterior cingulate cortex. Neuroimage. 2007;34:888–895.
    1. Huster R.J., Wolters C., Wollbrink A., Schweiger E., Wittling W., Pantev C., Junghofer M. Effects of anterior cingulate fissurization on cognitive control during stroop interference. Hum. Brain Mapp. 2009;30:1279–1289.
    1. Hyde K.L., Lerch J., Norton A., Forgeard M., Winner E., Evans A.C., Schlaug G. Musical training shapes structural brain development. J. Neurosci. 2009;29:3019–3025.
    1. Insel T.R. Rethinking schizophrenia. Nature. 2010;468:187–193.
    1. Khornitova M., Martin R.E., Gabrieli J.D.E., Sheridan M.A. Cortical gray-matter thinning is associated with age-related improvements on executive function tasks. Dev. Cogn. Neurosci. 2013;6:61–71.
    1. Lemaire C., Moran G.R., Swan H. Impact of audio/visual systems on pediatric sedation in magnetic resonance imaging. J. Magn. Reson. Imaging. 2009;30:649–655.
    1. Leonard C.M., Towler S., Welcome S., Chiarello C. Paracingulate asymmetry in anterior and midcingulate cortex: sex differences and the effect of measurement technique. Brain Struct. Funct. 2009;213:553–569.
    1. MacLeod C.M. Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 1991;109:163–203.
    1. MacLeod C.M., Dodd M.D., Sheard E.D., Wilson D.E., Bibi U. In opposition to inhibition. In: Ross B.H., editor. The Psychology of Learning and Motivation. Academic Press; San Diego: 2003. pp. 163–214.
    1. Mangin J.F., Riviere D., Cachia A., Duchesnay E., Cointepas Y., Papadopoulos-Orfanos D., Scifo P., Ochiai T., Brunelle F., Regis J. A framework to study the cortical folding patterns. Neuroimage. 2004;23(Suppl. 1):S129–S138.
    1. Moffitt T.E., Arseneault L., Belsky D., Dickson N., Hancox R.J., Harrington H., Houts R., Poulton R., Roberts B.W., Ross S., Sears M.R., Thomson W.M., Caspi A. A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. U. S. A. 2011;108:2693–2698.
    1. Ono M., Kubik S., Abarnathey C.D. Georg Thieme; New York: 1990. Atlas of the Cerebral Sulci.
    1. Panizzon M.S., Fennema-Notestine C., Eyler L.T., Jernigan T.L., Prom-Wormley E., Neale M., Jacobson K., Lyons M.J., Grant M.D., Franz C.E., Xian H., Tsuang M., Fischl B., Seidman L., Dale A., Kremen W.S. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex. 2009;19:2728–2735.
    1. Paus T., Koski L., Caramanos Z., Westbury C. Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport. 1998;9:R37–R47.
    1. Paus T., Otkay N., Caramanos Z., MacDonald D., Zijdenbos A., D‘Avirro D., Gutmans D., Holmes C., Tomaiuolo F., Evans A.C. In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior rostral sulci: hemispheric asymmetries, gender differences and probability maps. J. Comp. Neurol. 1996;376:664–673.
    1. Paus T., Tomaiuolo F., Otaky N., MacDonald D., Petrides M., Atlas J., Morris R., Evans A.C. Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb. Cortex. 1996;6:207–214.
    1. Petersen S.E., Posner M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 2012;35:73–89.
    1. Posner M.I. Imaging attention networks. Neuroimage. 2012;61:450–456.
    1. Quinn P.D., Fromme K. Self-regulation as a protective factor against risky drinking and sexual behavior. Psychol. Addict. Behav. 2010;24:376–385.
    1. Rakic P. Neuroscience. Genetic control of cortical convolutions. Science. 2004;303:1983–1984.
    1. Raven J., Raven J.C., Court J.H. Harcourt Assessment; San Antonio: 1998. Manual for Raven's Progressive Matrices and Vocabulary Scales. Section 2: The Coloured Progressive Matrices.
    1. Raznahan A., Shaw P., Lalonde F., Stockman M., Wallace G.L., Greenstein D., Clasen L., Gogtay N., Giedd J.N. How does your cortex grow? J. Neurosci. 2011;31:7174–7177.
    1. Rothbart M.K., Sheese B.E., Rueda M.R., Posner M.I. Developing mechanisms of self-regulation in early life. Emot. Rev. 2011;32:207–213.
    1. Stroop J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935;18:643–662.
    1. Sun Z.Y., Kloppel S., Riviere D., Perrot M., Frackowiak R., Siebner H., Mangin J.F. The effect of handedness on the shape of the central sulcus. Neuroimage. 2012;60:332–339.
    1. Takeuchi H., Taki Y., Sassa Y., Hashizume H., Sekiguchi A., Nagase T., Nouchi R., Fukushima A., Kawashima R. Regional gray and white matter volume associated with Stroop interference: evidence from voxel-based morphometry. Neuroimage. 2012;59:2899–2907.
    1. Van Essen D.C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 1997;385:313–318.
    1. Vogt B. Oxford University Press; Oxford: 2009. Cingulate Neurobiology and Disease.
    1. Wechsler D. Harcourt Assessment; San Antonio: 2003. Wechsler Intelligence Scale for Children-Fourth Edition. Administration and Scoring Manual.
    1. Westlye L.T., Grydeland H., Walhovd K.B., Fjell A.M. Associations between regional cortical thickness and attentional networks as measured by the attention network test. Cereb. Cortex. 2011;21:345–356.
    1. White T., Su S., Schmidt M., Kao C.Y., Sapiro G. The development of gyrification in childhood and adolescence. Brain Cogn. 2010;72:36–45.
    1. Whittle S., Allen N.B., Fornito A., Lubman D.I., Simmons J.G., Pantelis C., Yucel M. Variations in cortical folding patterns are related to individual differences in temperament. Psychiatry Res. 2009;172:68–74.
    1. Willcutt E.G., Doyle A.E., Nigg J.T., Faraone S.V., Pennington B.F. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol. Psychiatry. 2005;57:1336–1346.
    1. Wright I., Waterman M., Prescott H., Murdoch-Eaton D. A new Stroop-like measure of inhibitory function development: typical developmental trends. J. Child Psychol. Psychiatry. 2003;44:561–575.
    1. Yucel M., Stuart G.W., Maruff P., Velakoulis D., Crowe S.F., Savage G., Pantelis C. Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb. Cortex. 2001;11:17–25.
    1. Yucel M., Stuart G.W., Maruff P., Wood S.J., Savage G.R., Smith D.J., Crowe S.F., Copolov D.L., Velakoulis D., Pantelis C. Paracingulate morphologic differences in males with established schizophrenia: a magnetic resonance imaging morphometric study. Biol. Psychiatry. 2002;52:15–23.
    1. Yucel M., Wood S.J., Phillips L.J., Stuart G.W., Smith D.J., Yung A., Velakoulis D., McGorry P.D., Pantelis C. Morphology of the anterior cingulate cortex in young men at ultra-high risk of developing a psychotic illness. Br. J. Psychiatry. 2003;182:518–524.

Source: PubMed

3
S'abonner