Unfavourable risk factor control after coronary events in routine clinical practice

Elise Sverre, Kari Peersen, Einar Husebye, Erik Gjertsen, Lars Gullestad, Torbjørn Moum, Jan Erik Otterstad, Toril Dammen, John Munkhaugen, Elise Sverre, Kari Peersen, Einar Husebye, Erik Gjertsen, Lars Gullestad, Torbjørn Moum, Jan Erik Otterstad, Toril Dammen, John Munkhaugen

Abstract

Background: Risk factor control after a coronary event in a recent European multi-centre study was inadequate. Patient selection from academic centres and low participation rate, however, may underscore failing risk factor control in routine clinical practice. Improved understanding of the patient factors that influence risk factor control is needed to improve secondary preventive strategies. The objective of the present paper was to determine control of the major risk factors in a coronary population from routine clinical practice, and how risk factor control was influenced by the study factors age, gender, number of coronary events, and time since the index event.

Methods: A cross-sectional study determined risk factor control and its association with study factors in 1127 patients (83% participated) aged 18-80 years with acute myocardial infarction and/or revascularization identified from medical records. Study data were collected from a self-report questionnaire, clinical examination, and blood samples after 2-36 months (median 16) follow-up.

Results: Twenty-one percent were current smokers at follow-up. Of those smoking at the index event 56% continued smoking. Obesity was found in 34%, and 60% were physically inactive. Although 93% were taking blood-pressure lowering agents and statins, 46% were still hypertensive and 57% had LDL cholesterol >1.8 mmol/L at follow-up. Suboptimal control of diabetes was found in 59%. The patients failed on average to control three of the six major risk factors, and patients with >1 coronary events (p < 0.001) showed the poorest overall control. A linear increase in smoking (p < 0.01) and obesity (p < 0.05) with increasing time since the event was observed.

Conclusions: The majority of coronary patients in a representative Norwegian population did not achieve risk factor control, and the poorest overall control was found in patients with several coronary events. New strategies for secondary prevention are clearly needed to improve risk factor control. Even modest advances will provide major health benefits.

Trial registration: Registered at ClinicalTrials.gov (ID NCT02309255 ).

Keywords: Coronary heart disease; Guidelines; Risk factors; Secondary prevention.

Figures

Fig. 1
Fig. 1
Proportion of coronary risk factors 2-36 months after the index coronary event
Fig. 2
Fig. 2
Estimated marginal means* of number of coronary risk factors†

References

    1. Townsend N, Nichols M, Scarborough P, Rayner M. Cardiovascular disease in Europe - epidemiological update 2015. Eur Heart J. 2015;21;36(40):2696–705. doi: 10.1093/eurheartj/ehv428.
    1. Sulo G, Vollset SE, Nygard O, Igland J, Egeland GM, Ebbing M, Tell GS. Trends in acute myocardial infarction event rates and risk of recurrences after an incident event in Norway 1994 to 2009 (from a Cardiovascular Disease in Norway Project) Am J Cardiol. 2014;113(11):1777–1781. doi: 10.1016/j.amjcard.2014.03.006.
    1. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–952. doi: 10.1016/S0140-6736(04)17018-9.
    1. Chow CK, Jolly S, Rao-Melacini P, Fox KA, Anand SS, Yusuf S. Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes. Circulation. 2010;121(6):750–758. doi: 10.1161/CIRCULATIONAHA.109.891523.
    1. Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, Albus C, Benlian P, Boysen G, Cifkova R, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) Eur Heart J. 2012;33(13):1635–1701. doi: 10.1093/eurheartj/ehs092.
    1. Kotseva K, Wood D, De Bacquer D, De Backer G, Ryden L, Jennings C, Gyberg V, Amouyel P, Bruthans J, Castro Conde A, et al. EUROASPIRE IV: A European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur J Prev Cardiol. 2015. Epub ahead of print 6 January 2015. doi:10.1177/2047487315569401.
    1. Kotseva K, Wood D, De Backer G, De Bacquer D, Pyorala K, Keil U. Cardiovascular prevention guidelines in daily practice: a comparison of EUROASPIRE I, II, and III surveys in eight European countries. Lancet. 2009;373(9667):929–940. doi: 10.1016/S0140-6736(09)60330-5.
    1. Cacoub PP, Zeymer U, Limbourg T, Baumgartner I, Poldermans D, Rother J, Bhatt DL, Steg PG. Effects of adherence to guidelines for the control of major cardiovascular risk factors on outcomes in the REduction of Atherothrombosis for Continued Health (REACH) Registry Europe. Heart. 2011;97(8):660–667. doi: 10.1136/hrt.2010.213710.
    1. Ferrari R, Ford I, Greenlaw N, Tardif JC, Tendera M, Abergel H, Fox K, Hu D, Shalnova S, Steg PG. Geographical variations in the prevalence and management of cardiovascular risk factors in outpatients with CAD: Data from the contemporary CLARIFY registry. Eur J Prev Cardiol. 2015;22(8):1056–1065. doi: 10.1177/2047487314547652.
    1. Mendis S, Abegunde D, Yusuf S, Ebrahim S, Shaper G, Ghannem H, Shengelia B. WHO study on Prevention of REcurrences of Myocardial Infarction and StrokE (WHO-PREMISE) Bull World Health Organ. 2005;83(11):820–9.
    1. Bhatt DL, Steg PG, Ohman EM, Hirsch AT, Ikeda Y, Mas JL, Goto S, Liau CS, Richard AJ, Rother J, et al. International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA. 2006;295(2):180–189. doi: 10.1001/jama.295.2.180.
    1. Munkhaugen J, Sverre E, Peersen K, Gjertsen E, Gullestad L, Moum T, Otterstad JE, Perk J, Husebye E, Dammen T. The role of medical and psychosocial factors for unfavourable coronary risk factor control. Scand Cardiovasc J. 2016;50(1):1–8.
    1. Statistics Norway at and The Norwegian Labour and Welfare Administration at . Accessed 25 Nov 2015.
    1. Otterstad J. Influence on lifestyle measures and five-year coronary risk by a comprehensive lifestyle intervention programme in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil. 2003;10(6):429–437. doi: 10.1097/01.hjr.0000107024.38316.6a.
    1. Mosdol A. Dietary assessment - the weakest link?: a dissertation exploring the limitations to questionnaire based methods of dietary assessment. Ph.D. thesis. Oslo: Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo; 2004.
    1. Classification and diagnosis of diabetes. Diabetes Care. 2015;38(Suppl):S8-s16.
    1. Johnsen JR. Health Systems in Transition: Norway. WHO Regional Office for Europe on behalf of the European Observatory on Health Systems and Policies, 2006;8(1):1–178.
    1. Kurtze N, Rangul V, Hustvedt BE, Flanders WD. Reliability and validity of self-reported physical activity in the Nord-Trondelag Health Study: HUNT 1. Scand J Public Health. 2008;36(1):52–61. doi: 10.1177/1403494807085373.
    1. Vedin O, Hagstrom E, Stewart R, Brown R, Krug-Gourley S, Davies R, Wallentin L, White H, Held C. Secondary prevention and risk factor target achievement in a global, high-risk population with established coronary heart disease: baseline results from the STABILITY study. Eur J Prev Cardiol. 2013;20(4):678–685. doi: 10.1177/2047487312444995.
    1. OECD Health Statistics (). Accessed 16 Nov 2015.
    1. OECD Health Statistics (). Accessed 16 Nov 2015.
    1. Mehta RH, Bhatt DL, Steg PG, Goto S, Hirsch AT, Liau CS, Rother J, Wilson PW, Richard AJ, Eagle KA, et al. Modifiable risk factors control and its relationship with 1 year outcomes after coronary artery bypass surgery: insights from the REACH registry. Eur Heart J. 2008;29(24):3052–3060. doi: 10.1093/eurheartj/ehn478.
    1. Kolandaivelu K, Leiden BB, O'Gara PT, Bhatt DL. Non-adherence to cardiovascular medications. Eur Heart J. 2014;35(46):3267–3276. doi: 10.1093/eurheartj/ehu364.
    1. Albert MA, Glynn RJ, Buring J, Ridker PM. Impact of traditional and novel risk factors on the relationship between socioeconomic status and incident cardiovascular events. Circulation. 2006;114(24):2619–2626. doi: 10.1161/CIRCULATIONAHA.106.660043.
    1. Alter DA, Franklin B, Ko DT, Austin PC, Lee DS, Oh PI, Stukel TA, Tu JV. Socioeconomic status, functional recovery, and long-term mortality among patients surviving acute myocardial infarction. PLoS One. 2014;8(6):e65130. doi: 10.1371/journal.pone.0065130.
    1. Pogosova N, Saner H, Pedersen SS, Cupples ME, McGee H, Hofer S, Doyle F, Schmid JP, von Kanel R. Psychosocial aspects in cardiac rehabilitation: From theory to practice. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation of the European Society of Cardiology. Eur J Prev Cardiol. 2015;22(10):1290–1306. doi: 10.1177/2047487314543075.
    1. Perk J, Hambraeus K, Burell G, Carlsson R, Johansson P, Lisspers J. Study of Patient Information after percutaneous Coronary Intervention (SPICI): should prevention programmes become more effective? EuroIntervention. 2014;10:e1–7. doi: 10.4244/EIJV10I11A223.
    1. Erhardt LR. Barriers to effective implementation of guideline recommendations. Am J Med. 2005;118(Suppl 12A):36–41. doi: 10.1016/j.amjmed.2005.09.004.
    1. Chowdhury R, Khan H, Heydon E, Shroufi A, Fahimi S, Moore C, Stricker B, Mendis S, Hofman A, Mant J, et al. Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. Eur Heart J. 2013;34(38):2940–2948. doi: 10.1093/eurheartj/eht295.
    1. D'Ascenzo F, Colombo F, Barbero U, Moretti C, Omede P, Reed MJ, Tarantini G, Frati G, Di Nicolantonio JJ, Biondi Zoccai G, et al. Discontinuation of dual antiplatelet therapy over 12 months after acute coronary syndromes increases risk for adverse events in patients treated with percutaneous coronary intervention: systematic review and meta-analysis. J Interv Cardiol. 2014;27(3):233–241. doi: 10.1111/joic.12107.
    1. Janssen V, De Gucht V, Dusseldorp E, Maes S. Lifestyle modification programmes for patients with coronary heart disease: a systematic review and meta-analysis of randomized controlled trials. Eur J Prev Cardiol. 2013;20(4):620–640. doi: 10.1177/2047487312462824.
    1. Beswick AD, Rees K, Griebsch I, Taylor FC, Burke M, West RR, Victory J, Brown J, Taylor RS, Ebrahim S. Provision, uptake and cost of cardiac rehabilitation programmes: improving services to under-represented groups. Health Technol Assess. 2004;8(41):iii–iv. doi: 10.3310/hta8410.
    1. Giannuzzi P, Temporelli PL, Marchioli R, Maggioni AP, Balestroni G, Ceci V, Chieffo C, Gattone M, Griffo R, Schweiger C, et al. Global secondary prevention strategies to limit event recurrence after myocardial infarction: results of the GOSPEL study, a multicenter, randomized controlled trial from the Italian Cardiac Rehabilitation Network. Arch Intern Med. 2008;168(20):2194–2204. doi: 10.1001/archinte.168.20.2194.
    1. Urbinati S, Olivari Z, Gonzini L, Savonitto S, Farina R, Del Pinto M, Valbusa A, Fantini G, Mazzoni A, Maggioni AP. Secondary prevention after acute myocardial infarction: Drug adherence, treatment goals, and predictors of health lifestyle habits. The BLITZ-4 Registry. Eur J Prev Cardiol. 2015;22(12):1548–1556. doi: 10.1177/2047487314561876.

Source: PubMed

3
S'abonner