Utility of bronchoalveolar lavage in the management of immunocompromised patients presenting with lung infiltrates

Randall Choo, Naser Salman Hamza Naser, Nivedita Vikas Nadkarni, Devanand Anantham, Randall Choo, Naser Salman Hamza Naser, Nivedita Vikas Nadkarni, Devanand Anantham

Abstract

Background: Bronchoalveolar lavage (BAL) is utilized for diagnosing lung infiltrates in immunocompromised. There is heterogeneity in the data and reported diagnostic yields range from 26 to 69%. Therefore, selection criteria for BAL to maximize yield and minimize complications are unclear. Objectives of this study were to determine the diagnostic yield and complication rate of BAL in immunocompromised patients presenting with lung infiltrates, and identify factors impacting these outcomes. Exploratory aims included characterization of pathogens, rate of treatment modification and mortality.

Methods: Retrospective study from January 2012 to December 2016. Patients on mechanical ventilation were excluded. Positive diagnostic yield was defined as confirmed microbiological or cytological diagnosis.

Results: A total of 217 patients were recruited (70.1% male and mean age: 51.7 ± 14.6 years). Diagnostic yield was 60.8% and complication rate 14.7%. Complications (hypoxemia and endobronchial bleeding) were all sell-limiting. Treatment modification based on BAL results was 63.3%. In 97.0% an infectious aetiology was identified. HIV infection (OR 5.304, 95% CI 1.611-17.458, p = 0.006) and severe neutropenia (OR 4.253, 95% CI 1.288-14.045, p = 0.018) were associated with positive yield. Leukemia (OR 0.317, 95% CI 0.102-0.982, p = 0.047) was associated with lower yield. No factors impacted complication rate. Overall mortality (90-day) was 17.5% and in those with hematologic malignancy, it was 28.3%.

Conclusion: BAL retains utility in diagnosis of immunocompromised patients with lung infiltrates. However, patients with hematologic malignancy have a high mortality and alternative sampling should be considered because of poor results with BAL.

Trial registration: ClinicalTrials.gov identifier NCT01374542 . Registered June 16, 2011.

Keywords: Bronchoalveolar lavage; Flexible bronchoscopy; Immunocompromised; Lung infiltrates.

Conflict of interest statement

Ethics approval and consent to participate

Data was rendered non-identifiable with removal of patient’s name, identification card number and date of procedure. Waiver of consent was approved by SingHealth Centralised Institutional Review Board. Approval Reference: 2011/350/C.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Rañó A, Agustí C, Benito N, Rovira M, Angrill J, Pumarola T, Torres A. Prognostic factors of non-HIV immunocompromised patients with pulmonary infiltrates. Chest. 2002;122(1):253–261.
    1. Jepson SL, Pakkal M, Bajaj A, Raj V. Pulmonary complications in the non-HIV immunocompromised patient. Clin Radiol. 2012;67(10):1001–10.
    1. Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, Bousvaros A, Dhanireddy S, Sung L, Keyserling H, Kang I. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014;58(3):e44–100.
    1. Rosenow EC, Wilson WR, Cockerill FR. Pulmonary disease in the immunocompromised host (first of two parts) Mayo Clin Proc. 1985;60(7):473–487.
    1. Du Rand IA, Blaikley J, Booton R, Chaudhuri N, Gupta V, Khalid S, Mandal S, Martin J, Mills J, Navani N, Rahman NM. British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults. Thorax. 2013;68:i1–i44.
    1. National Cancer Institute . Cancer Therapy Evaluation Program Protocol Development Website for Common Terminology Criteria for Adverse Events. [Internet] U.S. Department of Health and Human Services. 2017.
    1. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–383.
    1. Baughman RP, Dohn MN, Frame PT. The continuing utility of bronchoalveolar lavage to diagnose opportunistic infection in AIDS patients. Am J Med. 1994;97(6):515–522.
    1. Danés C, González-Martín J, Pumarola T, Rañó A, Benito N, Torres A, Moreno A, Rovira M, de la Bellacasa JP. Pulmonary infiltrates in immunosuppressed patients: analysis of a diagnostic protocol. J Clin Microbiol. 2002;40(6):2134–2140.
    1. Vélez L, Correa LT, Maya MA, Mejía P, Ortega J, Bedoya V, Ortega H. Diagnostic accuracy of bronchoalveolar lavage samples in immunosuppressed patients with suspected pneumonia: analysis of a protocol. Respir Med. 2007;101(10):2160–2167.
    1. Brownback KR, Simpson SQ. Association of bronchoalveolar lavage yield with chest computed tomography findings and symptoms in immunocompromised patients. Ann Thorac Med. 2013;8(3):153–159.
    1. Regional Office for South-East Asia, World Health Organization . Bending the curve - ending TB: Annual report 2017. [Internet] WHO Regional Office for South-East Asia. 2017.
    1. Hohenadel IA, Kiworr M, Genitsariotis R, Zeidler D, Lorenz J. Role of bronchoalveolar lavage in immunocompromised patients with pneumonia treated with a broad spectrum antibiotic and antifungal regimen. Thorax. 2001;56(2):115–120.
    1. Peikert T, Rana S, Edell ES. Safety, diagnostic yield, and therapeutic implications of flexible bronchoscopy in patients with febrile neutropenia and pulmonary infiltrates. Mayo Clin Proc. 2005;80(11):1414–1420.
    1. Sampsonas F, Kontoyiannis DP, Dickey BF, Evans SE. Performance of a standardized bronchoalveolar lavage protocol in a comprehensive cancer center. Cancer. 2011;117(15):3424–3433.
    1. Reichenberger F, Dickenmann M, Binet I, Soler M, Bolliger C, Steiger J, Brunner F, Thiel G, Tamm M. Diagnostic yield of bronchoalveolar lavage following renal transplantation. Transpl Infect Dis. 2001;3(1):2–7.
    1. Rañó A, Agustí C, Jimenez P, Angrill J, Benito N, Danes C, Gonzalez J, Rovira M, Pumarola T, Moreno A, Torres A. Pulmonary infiltrates in non-HIV immunocompromised patients: a diagnostic approach using non-invasive and bronchoscopic procedures. Thorax. 2001;56(5):379–387.
    1. Taggart S, Breen R, Goldsack N, Sabin C, Johnson M, Lipman M. The changing pattern of bronchoscopy in an HIV-infected population. Chest. 2002;122(3):878–885.
    1. Jain P, Sandur S, Meli Y, Arroliga A, Stoller J, Mehta A. Role of flexible bronchoscopy in immunocompromised patients with lung infiltrates. Chest. 2004;125(2):712–722.
    1. Bissinger AL, Einsele H, Hamprecht K, Schumacher U, Kandolf R, Loeffler J, Aepinus C, Bock T, Jahn G, Hebart H. Infectious pulmonary complications after stem cell transplantation or chemotherapy: diagnostic yield of bronchoalveolar lavage. Diagn Microbiol Infect Dis. 2005;52(4):275–280.
    1. Hofmeister CC, Czerlanis C, Forsythe S, Stiff PJ. Retrospective utility of bronchoscopy after hematopoietic stem cell transplant. Bone Marrow Transplant. 2006;38(10):693–698.
    1. Boersma WG, Erjavec Z, van der Werf TS, de Vries-Hosper HG, Gouw ASH, Manson WL. Bronchoscopic diagnosis of pulmonary infiltrates in granulocytopenic patients with hematologic malignancies: BAL versus PSB and PBAL. Respir Med. 2007;101(2):317–325.
    1. Burger CD. Utility of positive bronchoalveolar lavage in predicting respiratory failure after hematopoietic stem cell transplantation: a retrospective analysis. Transplant Proc. 2007;39(5):1623–1625.
    1. Cordani S, Manna A, Vignali M, Tascini C. Bronchoalveolar lavage as a diagnostic tool in patients with hematological malignancies and pneumonia. Infez Med. 2008;16(4):209–213.
    1. Hummel M, Rudert S, Hof H, Hehlmann R, Buchheidt D. Diagnostic yield of bronchoscopy with bronchoalveolar lavage in febrile patients with hematologic malignancies and pulmonary infiltrates. Ann Hematol. 2008;87(4):291–297.
    1. Shannon VR, Andersson BS, Lei X, Champlin RE, Kontoyiannis DP. Utility of early versus late fiberoptic bronchoscopy in the evaluation of new pulmonary infiltrates following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2010;45(4):647–655.
    1. Kottmann RM, Kelly J, Lyda E, Gurell M, Stalica J, Ormsby W, Moon K, Trawick D, Sime PJ. Bronchoscopy with bronchoalveolar lavage: determinants of yield and impact on management in immunosuppressed patients. Thorax. 2011;66(9):823.
    1. Gilbert CR, Lerner A, Baram M, Awsare BK. Utility of flexible bronchoscopy in the evaluation of pulmonary infiltrates in the hematopoietic stem cell transplant population–a single center fourteen-year experience. Arch Bronconeumol. 2013;49(5):189–195.
    1. Kim SW, Rhee CK, Kang HS, Lee HY, Kang JY, Kim SJ, Kim SK, Lee SY, Kim YK, Lee JW. Diagnostic value of bronchoscopy in patients with hematologic malignancy and pulmonary infiltrates. Ann Hematol. 2015;94(1):153–159.
    1. Svensson T, Lundström KL, Höglund M, Cherif H. Utility of bronchoalveolar lavage in diagnosing respiratory tract infections in patients with hematological malignancies: are invasive diagnostics still needed? Ups J Med Sci. 2017;122(1):56–60.
    1. Sakata KK, Klassen CL, Bollin KB, Grys TE, Slack JL, Wesselius LJ, Vikram HR. Microbiologic yield of bronchoalveolar lavage specimens from stem cell transplant recipients. Transpl Infect Dis. 2017;19(3):e12684.

Source: PubMed

3
S'abonner