Caging the dragon: Research approach to COVID-19-related thrombosis

Marieke J H A Kruip, Suzanne C Cannegieter, Hugo Ten Cate, Eric C M van Gorp, Nicole P Juffermans, Frederikus A Klok, Coen Maas, Anton Vonk-Noordegraaf, Dutch COVID Thrombosis Coalition study group, Marieke J H A Kruip, Suzanne C Cannegieter, Hugo Ten Cate, Eric C M van Gorp, Nicole P Juffermans, Frederikus A Klok, Coen Maas, Anton Vonk-Noordegraaf, Dutch COVID Thrombosis Coalition study group

Abstract

The incidence of venous thrombosis, mostly pulmonary embolism (PE), ranging from local immunothrombosis to central emboli, but also deep vein thrombosis (DVT) in people with coronavirus disease 2019 (COVID-19) is reported to be remarkably high. The relevance of better understanding, predicting, treating, and preventing COVID-19-associated venous thrombosis meets broad support, as can be concluded from the high number of research, review, and guideline papers that have been published on this topic. The Dutch COVID & Thrombosis Coalition (DCTC) is a multidisciplinary team involving a large number of Dutch experts in the broad area of venous thrombosis and hemostasis research, combined with experts on virology, critically ill patients, pulmonary diseases, and community medicine, across all university hospitals and many community hospitals in the Netherlands. Within the consortium, clinical data of at least 5000 admitted COVID-19-infected individuals are available, including substantial collections of biobanked materials in an estimated 3000 people. In addition to considerable experience in preclinical and clinical thrombosis research, the consortium embeds virology-hemostasis research models within unique biosafety facilities to address fundamental questions on the interaction of virus with epithelial and vascular cells, in relation to the coagulation and inflammatory system. The DCTC has initiated a comprehensive research program to answer many of the current questions on the pathophysiology and best anticoagulant treatment of COVID-19-associated thrombotic complications. The research program was funded by grants of the Netherlands Thrombosis Foundation and the Netherlands Organization for Health Research and Development. Here, we summarize the design and main aims of the research program.

Keywords: COVID‐19; anticoagulants; pulmonary embolism; severe acute respiratory syndrome coronavirus 2; thrombosis; venous thrombosis.

© 2021 The Authors. Research and Practice in Thrombosis and Haemostasis published by Wiley Periodicals LLC on behalf of International Society on Thrombosis and Haemostasis (ISTH).

Figures

FIGURE 1
FIGURE 1
Integration of the five work packages
FIGURE 2
FIGURE 2
Dedicated patient pathway applied to survivors of COVID‐19–associated VTE according to the Dutch Guideline of care for patients with COVID‐19–associated venous thromboembolism. #CPET is indicated if echocardiography does not show signs of pulmonary hypertension. VQ scan, pulmonary function tests, CPET, echocardiography depending in individual patient characteristics. In case of Chronic Thromboembolic Pulmonary Disease (CTEPD), patients should be referred to a CTEPH expertise center. CTEPH, chronic thromboembolic pulmonary hypertension; CTEPD, chronic thromboembolic pulmonary disease; VQ scan, ventilation perfusion scintigraphy; PTS, postthrombotic syndrome; CPET, cardiopulmonary exercise test

References

    1. Klok FA, Kruip M, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID‐19. Thromb Res. 2020;191:145–7. 10.1016/j.thromres.2020.04.013
    1. Klok FA, Kruip M, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID‐19: an updated analysis. Thromb Res. 2020;191:148–50. 10.1016/j.thromres.2020.04.041
    1. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID‐19. J Thrombosis haemostasis: JTH. 2020;18(8):1995–2002. 10.1111/jth.14888
    1. Helms J, Tacquard C, Severac F, Leonard‐Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS‐CoV‐2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46:1089–98. 10.1007/s00134-020-06062-x
    1. Santoliquido A, Porfidia A, Nesci A, De Matteis G, Marrone G, Porceddu E, et al. Incidence of deep vein thrombosis among non‐ICU patients hospitalized for COVID‐19 despite pharmacological thromboprophylaxis. J Thrombosis Haemostasis: JTH. 2020;18(9):2358–2363. 10.1111/jth.14992
    1. Ren B, Yan F, Deng Z, Zhang S, Xiao L, Wu M, et al. Extremely high incidence of lower extremity deep venous thrombosis in 48 patients with severe COVID‐19 in Wuhan. Circulation. 2020;142:181–3. 10.1161/circulationaha.120.047407
    1. Nahum J, Morichau‐Beauchant T, Daviaud F, Echegut P, Fichet J, Maillet JM, et al. Venous thrombosis among critically ill patients with coronavirus disease 2019 (COVID‐19). JAMA Network Open. 2020;3:e2010478. 10.1001/jamanetworkopen.2020.10478
    1. Longchamp A, Longchamp J, Manzocchi‐Besson S, Whiting L, Haller C, Jeanneret S, et al. Venous thromboembolism in critically Ill patients with COVID‐19: results of a screening study for deep vein thrombosis. Res Pract Thrombosis Haemostasis. 2020;4:842–7. 10.1002/rth2.12376
    1. Nopp S, Moik F, Jilma B, Pabinger I, Ay C. Risk of venous thromboembolism in patients with COVID‐19: a systematic review and meta‐analysis. Res Pract Thrombosis Haemostasis. 2020;4(7):1178‐1191. 10.1002/rth2.12439
    1. Cook D, Crowther M, Meade M, Rabbat C, Griffith L, Schiff D, et al. Deep venous thrombosis in medical‐surgical critically ill patients: prevalence, incidence, and risk factors. Crit Care Med. 2005;33:1565–71. 10.1097/01.ccm.0000171207.95319.b2
    1. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID‐19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow‐up: JACC state‐of‐the‐art review. J Am Coll Cardiol. 2020;75:2950–73. 10.1016/j.jacc.2020.04.031
    1. Cattaneo M, Bertinato EM, Birocchi S, Brizio C, Malavolta D, Manzoni M, et al. Pulmonary embolism or pulmonary thrombosis in COVID‐19? Is the recommendation to use high‐dose heparin for thromboprophylaxis justified? Thromb Haemost. 2020;120(8):1230‐1232. 10.1055/s-0040-1712097
    1. van Dam LF, Kroft LJM, van der Wal LI, Cannegieter SC, Eikenboom J, de Jonge E, et al. Clinical and computed tomography characteristics of COVID‐19 associated acute pulmonary embolism: a different phenotype of thrombotic disease? Thromb Res. 2020;193:86–9. 10.1016/j.thromres.2020.06.010
    1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID‐19 associated with acute respiratory distress syndrome. Lancet Respirat Med. 2020;8:420–2. 10.1016/S2213-2600(20)30076-X
    1. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid‐19. New Engl J Med. 2020;383:120–8. 10.1056/NEJMoa2015432
    1. Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID‐19. J Thrombosis Haemostasis: JTH. 2020;18:1559–61. 10.1111/jth.14849
    1. Levi M, Hunt BJ. Thrombosis and coagulopathy in COVID‐19: an illustrated review. Res Pract Thrombosis Haemostasis. 2020;4:744–51. 10.1002/rth2.12400
    1. Cannegieter SC, Klok FA. COVID‐19 associated coagulopathy and thromboembolic disease: commentary on an interim expert guidance. Res Pract Thrombosis Haemostasis. 2020;4:439–45. 10.1002/rth2.12350
    1. Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS‐CoV‐2 and viral sepsis: observations and hypotheses. Lancet. 2020;395:1517–20. 10.1016/s0140-6736(20)30920-x
    1. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, et al. Hypercoagulability of COVID‐19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thrombosis Haemostasis: JTH. 2020;18:1738–42. 10.1111/jth.14850
    1. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID‐19. JCI Insight. 2020;5(11):e138999. 10.1172/jci.insight.138999
    1. Bowles L, Platton S, Yartey N, Dave M, Lee K, Hart DP, et al. Lupus anticoagulant and abnormal coagulation tests in patients with Covid‐19. New Engl J Med. 2020;383:288–90. 10.1056/NEJMc2013656
    1. Kwong JC, Schwartz KL, Campitelli MA, Chung H, Crowcroft NS, Karnauchow T, et al. Acute myocardial infarction after laboratory‐confirmed influenza infection. New Engl J Med. 2018;378:345–53. 10.1056/NEJMoa1702090
    1. Keller TT, van der Sluijs KF, de Kruif MD, Gerdes VE, Meijers JC, Florquin S, et al. Effects on coagulation and fibrinolysis induced by influenza in mice with a reduced capacity to generate activated protein C and a deficiency in plasminogen activator inhibitor type 1. Circ Res. 2006;99:1261–9. 10.1161/01.RES.0000250834.29108.1a
    1. Goeijenbier M, van Wissen M, van de Weg C, Jong E, Gerdes VE, Meijers JC, et al. Review: viral infections and mechanisms of thrombosis and bleeding. J Med Virol. 2012;84:1680–96. 10.1002/jmv.23354
    1. Klok FA, van der Hulle T, den Exter PL, Lankeit M, Huisman MV, Konstantinides S. The post‐PE syndrome: a new concept for chronic complications of pulmonary embolism. Blood Rev. 2014;28:221–6. 10.1016/j.blre.2014.07.003
    1. Rabinovich A, Kahn SR. How I treat the postthrombotic syndrome. Blood. 2018;131:2215–22. 10.1182/blood-2018-01-785956
    1. Kahn SR, Ducruet T, Lamping DL, Arsenault L, Miron MJ, Roussin A, et al. Prospective evaluation of health‐related quality of life in patients with deep venous thrombosis. Arch Intern Med. 2005;165:1173–8. 10.1001/archinte.165.10.1173
    1. Kahn SR, Akaberi A, Granton JT, Anderson DR, Wells PS, Rodger MA, et al. Quality of life, dyspnea, and functional exercise capacity following a first episode of pulmonary embolism: results of the ELOPE cohort study. Am J Med. 2017;130(990):e9–e21. 10.1016/j.amjmed.2017.03.033
    1. Akaberi A, Klok FA, Cohn DM, Hirsch A, Granton J, Kahn SR. Determining the minimal clinically important difference for the PEmbQoL questionnaire, a measure of pulmonary embolism‐specific quality of life. J Thrombosis Haemostasis: JTH. 2018;16:2454–61. 10.1111/jth.14302
    1. Grosse SD, Nelson RE, Nyarko KA, Richardson LC, Raskob GE. The economic burden of incident venous thromboembolism in the United States: a review of estimated attributable healthcare costs. Thromb Res. 2016;137:3–10. 10.1016/j.thromres.2015.11.033
    1. Hunter R, Lewis S, Noble S, Rance J, Bennett PD. “Post‐thrombotic panic syndrome”: a thematic analysis of the experience of venous thromboembolism. Br J Health Psychol. 2017;22:8–25. 10.1111/bjhp.12213
    1. Sista AK, Klok FA. Late outcomes of pulmonary embolism: the post‐PE syndrome. Thromb Res. 2018;164:157–62. 10.1016/j.thromres.2017.06.017
    1. Chuang LH, van Hout B, Cohen AT, Gumbs PD, Kroep S, Bauersachs R, et al. Deep‐vein thrombosis in Europe ‐ burden of illness in relationship to healthcare resource utilization and return to work. Thromb Res. 2018;170:165–74. 10.1016/j.thromres.2018.08.001
    1. Hunter R, Noble S, Lewis S, Bennett P. Long‐term psychosocial impact of venous thromboembolism: a qualitative study in the community. BMJ Open. 2019;9:e024805. 10.1136/bmjopen-2018-024805
    1. Meltzer ME, Lisman T, de Groot PG, Meijers JC, le Cessie S, Doggen CJ, et al. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI‐1. Blood. 2010;116:113–21. 10.1182/blood-2010-02-267740
    1. Lisman T. Decreased plasma fibrinolytic potential as a risk for venous and arterial thrombosis. Semin Thromb Hemost. 2017;43:178–84. 10.1055/s-0036-1585081
    1. Blasi A, Patel VC, Adelmeijer J, Azarian S, Hernandez Tejero M, Calvo A, et al. Mixed fibrinolytic phenotypes in decompensated cirrhosis and acute‐on‐chronic liver failure with hypofibrinolysis in those with complications and poor survival. Hepatology (Baltimore, MD). 2020;71:1381–90. 10.1002/hep.30915
    1. Alshaikh NA, Rosing J, Thomassen M, Castoldi E, Simioni P, Hackeng TM. New functional assays to selectively quantify the activated protein C‐ and tissue factor pathway inhibitor‐cofactor activities of protein S in plasma. J Thrombosis Haemostasis: JTH. 2017;15:950–60. 10.1111/jth.13657
    1. Visser M, Heitmeier S, Ten Cate H, Spronk HMH. Role of factor XIA and plasma kallikrein in arterial and venous thrombosis. Thromb Haemost. 2020;120:883–993. 10.1055/s-0040-1710013
    1. Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017;13:942. 10.15252/msb.20156297
    1. Ünlü B, van Es N, Arindrarto W, Kiełbasa SM, Mei H, Westerga J, et al. Genes associated with venous thromboembolism in colorectal cancer patients. J Thrombosis Haemostasis: JTH. 2018;16:293–302. 10.1111/jth.13926
    1. Short KR, Kasper J, van der Aa S, Andeweg AC, Zaaraoui‐Boutahar F, Goeijenbier M, et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Resp J. 2016;47:954–66. 10.1183/13993003.01282-2015
    1. Menter T, Haslbauer JD, Nienhold R, Savic S, Deigendesch H, Frank S, et al. Postmortem examination of COVID‐19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77(2):198‐209 10.1111/his.14134
    1. Goeijenbier M, van Gorp EC, Van den Brand JM, Stittelaar K, Bakhtiari K, Roelofs JJ, et al. Activation of coagulation and tissue fibrin deposition in experimental influenza in ferrets. BMC Microbiol. 2014;14:134. 10.1186/1471-2180-14-134
    1. Brookhart MA, Wang PS, Solomon DH, Schneeweiss S. Evaluating short‐term drug effects using a physician‐specific prescribing preference as an instrumental variable. Epidemiology (Cambridge, Mass). 2006;17:268–75. 10.1097/01.ede.0000193606.58671.c5
    1. Huisman MV, Klok FA. Diagnostic management of acute deep vein thrombosis and pulmonary embolism. J Thrombosis Haemostasis: JTH. 2013;11:412–22. 10.1111/jth.12124
    1. Schulman S, Kearon C, Subcommittee on Control of Anticoagulation of the S , Standardization Committee of the International Society on T , Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non‐surgical patients. J Thrombosis Haemostasis: JTH. 2005;3:692–4. 10.1111/j.1538-7836.2005.01204.x
    1. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi‐state models. Stat Med. 2007;26:2389–430. 10.1002/sim.2712
    1. Goeman JJ. L1 penalized estimation in the Cox proportional hazards model. Biometric J Biometrische Zeitschrift. 2010;52:70–84. 10.1002/bimj.200900028
    1. Klok FA, Boon G, Barco S, Endres M, Geelhoed JJM, Knauss S, et al. The Post‐COVID‐19 Functional Status (PCFS) scale: a tool to measure functional status over time after COVID‐19. Eur Resp Journal. 2020;56:2001494. 10.1183/13993003.01494-2020
    1. Klok FA, Cohn DM, Middeldorp S, Scharloo M, Buller HR, van Kralingen KW, et al. Quality of life after pulmonary embolism: validation of the PEmb‐QoL Questionnaire. J Thrombosis Haemostasis: JTH. 2010;8:523–32. 10.1111/j.1538-7836.2009.03726.x
    1. Huisman MV, Barco S, Cannegieter SC, Le Gal G, Konstantinides SV, Reitsma PH, et al. Pulmonary embolism. Nat Rev Dis Primers. 2018;4:18028. 10.1038/nrdp.2018.28
    1. Klok FA, Couturaud F, Delcroix M, Humbert M. Diagnosis of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Eur Resp J. 2020;55:2000189. 10.1183/13993003.00189-2020
    1. Klok FA, Dzikowska‐Diduch O, Kostrubiec M, Vliegen HW, Pruszczyk P, Hasenfuss G, et al. Derivation of a clinical prediction score for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. J Thrombosis Haemostasis: JTH. 2016;14:121–8. 10.1111/jth.13175
    1. Ende‐Verhaar YM, Ruigrok D, Bogaard HJ, Huisman MV, Meijboom LJ, Vonk Noordegraaf A, et al. Sensitivity of a simple noninvasive screening algorithm for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. TH Open. 2018;2:e89–e95. 10.1055/s-0038-1636537
    1. Boon G, Bogaard HJ, Klok FA. Essential aspects of the follow‐up after acute pulmonary embolism: an illustrated review. Res Pract Thrombosis Haemostasis. 2020;4:958–68. 10.1002/rth2.12404
    1. Klok FA, Surie S, Kempf T, Eikenboom J, van Straalen JP, van Kralingen KW, et al. A simple non‐invasive diagnostic algorithm for ruling out chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Thromb Res. 2011;128:21–6. 10.1016/j.thromres.2011.03.004
    1. Klok FA, Tesche C, Rappold L, Dellas C, Hasenfuss G, Huisman MV, et al. External validation of a simple non‐invasive algorithm to rule out chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Thromb Res. 2015;135:796–801. 10.1016/j.thromres.2014.12.009
    1. Ende‐Verhaar YM, Huisman MV, Klok FA. To screen or not to screen for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Thromb Res. 2017;151:1–7. 10.1016/j.thromres.2016.12.026
    1. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2015;2016(37):67–119. 10.1093/eurheartj/ehv317
    1. Boon G, Barco S, Bertoletti L, Ghanima W, Huisman MV, Kahn SR, et al. Measuring functional limitations after venous thromboembolism: optimization of the Post‐VTE Functional Status (PVFS) Scale. Thromb Res. 2020;190:45–51. 10.1016/j.thromres.2020.03.020
    1. Kahn SR, Comerota AJ, Cushman M, Evans NS, Ginsberg JS, Goldenberg NA, et al. The postthrombotic syndrome: evidence‐based prevention, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2014;130:1636–61. 10.1161/CIR.0000000000000130
    1. Ten Cate‐Hoek AJ, Amin EE, Bouman AC, Meijer K, Tick LW, Middeldorp S, et al. Individualised versus standard duration of elastic compression therapy for prevention of post‐thrombotic syndrome (IDEAL DVT): a multicentre, randomised, single‐blind, allocation‐concealed, non‐inferiority trial. Lancet Haemat. 2018;5:e25–e33. 10.1016/S2352-3026(17)30227-2
    1. Mol GC, van de Ree MA, Klok FA, Tegelberg MJ, Sanders FB, Koppen S, et al. One versus two years of elastic compression stockings for prevention of post‐thrombotic syndrome (OCTAVIA study): randomised controlled trial. BMJ. 2016;353:i2691. 10.1136/bmj.i2691

Source: PubMed

3
S'abonner