Implementation of a workplace intervention using financial rewards to promote adherence to physical activity guidelines: a feasibility study

Elena Losina, Savannah R Smith, Ilana M Usiskin, Kristina M Klara, Griffin L Michl, Bhushan R Deshpande, Heidi Y Yang, Karen C Smith, Jamie E Collins, Jeffrey N Katz, Elena Losina, Savannah R Smith, Ilana M Usiskin, Kristina M Klara, Griffin L Michl, Bhushan R Deshpande, Heidi Y Yang, Karen C Smith, Jamie E Collins, Jeffrey N Katz

Abstract

Background: We designed and implemented the Brigham and Women's Wellness Initiative (B-Well), a single-arm study to examine the feasibility of a workplace program that used individual and team-based financial incentives to increase physical activity among sedentary hospital employees.

Methods: We enrolled sedentary, non-clinician employees of a tertiary medical center who self-reported low physical activity. Eligible participants formed or joined teams of three members and wore Fitbit Flex activity monitors for two pre-intervention weeks followed by 24 weeks during which they could earn monetary rewards. Participants were rewarded for increasing their moderate-to-vigorous physical activity (MVPA) by 10% from the previous week or for meeting the Centers for Disease Control and Prevention (CDC) physical activity guidelines (150 min of MVPA per week). Our primary outcome was the proportion of participants meeting weekly MVPA goals and CDC physical activity guidelines. Secondary outcomes included Fitbit-wear adherence and factors associated with meeting CDC guidelines more consistently.

Results: B-Well included 292 hospital employees. Participants had a mean age of 38 years (SD 11), 83% were female, 38% were obese, and 62% were non-Hispanic White. Sixty-three percent of participants wore the Fitbit ≥4 days per week for ≥20 weeks. Two-thirds were satisfied with the B-Well program, with 79% indicating that they would participate again. Eighty-six percent met either their personal weekly goal or CDC physical activity guidelines for at least 6 out of 24 weeks, and 52% met their goals or CDC physical activity guidelines for at least 12 weeks. African Americans, non-obese subjects, and those with lower impulsivity scores reached CDC guidelines more consistently.

Conclusions: Our data suggest that a financial incentives-based workplace wellness program can increase MVPA among sedentary employees. These results should be reproduced in a randomized controlled trial.

Trial registration: Clinicaltrials.gov, NCT02850094 . Registered July 27, 2016 [retrospectively registered].

Keywords: Exercise; Financial incentives; Physical activity; Workplace.

Conflict of interest statement

Ethics approval and consent to participate

B-Well was approved by the Partners HealthCare Human Research Committee as protocol 2014P000970/BWH. Participants provided written, informed consent.

Consent for publication

Not applicable.

Competing interests

All authors report being employed by Brigham and Women’s Hospital. EL and JK are Deputy Editors for Methodology and Biostatistics for the Journal of Bone and Joint Surgery. JK is President of the Osteoarthritis Research Society International and a medical editor for Healthwise. EL is a statistical consultant to Tissuegene. There are no other competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Average minutes of physical activity by week. The average minutes of physical activity at baseline and each week throughout the study are depicted for all study participants and for Fitbit adherent study participants. Fitbit adherence was defined as wearing the activity monitor ≥4 days per week for ≥20 weeks throughout the intervention. Baseline measures of physical activity were obtained during the two-week pre-intervention phase. The black circles show the average PA for all participants, and the light gray diamonds show the average PA for Fitbit adherent participants. The solid dark line shows the pre-intervention PA level for all participants, and the light dashed line shows the pre-intervention PA level for Fitbit adherent participants. Abbreviations: PA, physical activity
Fig. 2
Fig. 2
Percent of participants meeting personal goal or CDC guidelines, and percent wearing Fitbit at least 4 days of the week. This figure shows the proportion of the 292 participants meeting their personal goals or the CDC physical activity guidelines for each week of the study. The solid black line indicates the percent of participants wearing the Fitbit at least 4 days of the given week. Personal weekly goals were defined as a 10% increase in minutes of physical activity compared to the previous week. The total height of the bars represents the total percentage of participants who met either their personal weekly PA goals or the CDC physical activity guidelines. The black portions of the bars show the percent of participants meeting CDC guidelines, and the light gray portions show the percent of participants who met weekly PA goals, but not CDC guidelines. Participants without data were assumed to not have met guidelines or weekly goals
Fig. 3
Fig. 3
Average number of weeks meeting or exceeding CDC guidelines by baseline characteristic. The average (and 95% confidence interval) number of weeks that participants met or exceeded CDC physical activity guidelines is depicted for several baseline characteristics. Results are adjusted for age and comorbidities. Q4 is the highest quartile for delay discounting (immediate rewards preferred). Abbreviations: AA, African American

References

    1. Bize R, Johnson JA, Plotnikoff RC. Physical activity level and health-related quality of life in the general adult population: a systematic review. Prev Med. 2007;45(6):401–415. doi: 10.1016/j.ypmed.2007.07.017.
    1. Kohl HW., 3rd Physical activity and cardiovascular disease: evidence for a dose response. Med Sci Sports Exerc. 2001;33(6 Suppl):S472–S483. doi: 10.1097/00005768-200106001-00017.
    1. Laukkanen JA, Rauramaa R, Makikallio TH, Toriola AT, Kurl S. Intensity of leisure-time physical activity and cancer mortality in men. Br J Sports Med. 2011;45(2):125–129. doi: 10.1136/bjsm.2008.056713.
    1. Pinto Pereira SM, Geoffroy MC, Power C. Depressive symptoms and physical activity during 3 decades in adult life: bidirectional associations in a prospective cohort study. JAMA Psychiatry. 2014;71(12):1373–1380. doi: 10.1001/jamapsychiatry.2014.1240.
    1. Jeon CY, Lokken RP, FB H, van Dam RM. Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care. 2007;30(3):744–752. doi: 10.2337/dc06-1842.
    1. Sari N. Physical inactivity and its impact on healthcare utilization. Health Econ. 2009;18(8):885–901. doi: 10.1002/hec.1408.
    1. Conn VS, Hafdahl AR, Cooper PS, Brown LM, Lusk SL. Meta-analysis of workplace physical activity interventions. Am J Prev Med. 2009;37(4):330–339. doi: 10.1016/j.amepre.2009.06.008.
    1. U.S. Department of Health and Human Services. Physical activity guidelines for Americans. 2008. . Accessed 15 June 2016.
    1. Centers for Disease Control and Prevention Adult participation in aerobic and muscle-strengthening physical activities--United States, 2011. MMWR Morb Mortal Wkly Rep. 2013;62(17):326–330.
    1. Rabin M. Psychology and economics. J Econ Lit. 1998;36(1):11–46.
    1. Rice T. The behavioral economics of health and health care. Annu Rev Public Health. 2013;34:431–447. doi: 10.1146/annurev-publhealth-031912-114353.
    1. O'Donoghue T, Rabin M. The economics of immediate gratification. J Behav Decis Making. 2000;13(2):233–250. doi: 10.1002/(SICI)1099-0771(200004/06)13:2<233::AID-BDM325>;2-U.
    1. Volpp KG, Asch DA, Galvin R, Loewenstein G. Redesigning employee health incentives--lessons from behavioral economics. N Engl J Med. 2011;365(5):388–390. doi: 10.1056/NEJMp1105966.
    1. Giles EL, Robalino S, McColl E, Sniehotta FF, Adams J. The effectiveness of financial incentives for health behaviour change: systematic review and meta-analysis. PLoS One. 2014;9(3):e90347. doi: 10.1371/journal.pone.0090347.
    1. Mantzari E, Vogt F, Shemilt I, Wei Y, Higgins JP, Marteau TM. Personal financial incentives for changing habitual health-related behaviors: a systematic review and meta-analysis. Prev Med. 2015;75:75–85. doi: 10.1016/j.ypmed.2015.03.001.
    1. Volpp KG, Troxel AB, Pauly MV, Glick HA, Puig A, Asch DA, Galvin R, Zhu J, Wan F, DeGuzman J, et al. A randomized, controlled trial of financial incentives for smoking cessation. N Engl J Med. 2009;360(7):699–709. doi: 10.1056/NEJMsa0806819.
    1. Petry NM, Andrade LF, Barry D, Byrne SA. Randomized study of reinforcing ambulatory exercise in older adults. Psychol Aging. 2013;28(4):1164–1173. doi: 10.1037/a0032563.
    1. Finkelstein EA, Brown DS, Brown DR, Buchner DMA. Randomized study of financial incentives to increase physical activity among sedentary older adults. Prev Med. 2008;47(2):182–187. doi: 10.1016/j.ypmed.2008.05.002.
    1. Mitchell MS, Goodman JM, Alter DA, John LK, PI O, Pakosh MT, Faulkner GE. Financial incentives for exercise adherence in adults: systematic review and meta-analysis. Am J Prev Med. 2013;45(5):658–667. doi: 10.1016/j.amepre.2013.06.017.
    1. Barte JC, Wendel-Vos GC. A systematic review of financial incentives for physical activity: the effects on physical activity and related outcomes. Behav Med. 2015:1–12.
    1. Okie S. The employer as health coach. N Engl J Med. 2007;357(15):1465–1469. doi: 10.1056/NEJMp078152.
    1. Patel MS, Asch DA, Rosin R, Small DS, Bellamy SL, Heuer J, Sproat S, Hyson C, Haff N, Lee SM, et al. Framing financial incentives to increase physical activity among overweight and obese adults: a randomized, controlled trial. Ann Intern Med. 2016;164(6):385–394. doi: 10.7326/M15-1635.
    1. Patel MS, Asch DA, Rosin R, Small DS, Bellamy SL, Eberbach K, Walters KJ, Haff N, Lee SM, Wesby L, et al. Individual versus team-based financial incentives to increase physical activity: a randomized, controlled trial. J Gen Intern Med. 2016;31(7):746–754. doi: 10.1007/s11606-016-3627-0.
    1. Katz JN, Wright EA, Baron JA, Losina E. Development and validation of an index of musculoskeletal functional limitations. BMC Musculoskelet Disord. 2009;10:62. doi: 10.1186/1471-2474-10-62.
    1. Odum AL. Delay discounting: I'm a k, you're a k. J Exp Anal Behav. 2011;96(3):427–439. doi: 10.1901/jeab.2011.96-423.
    1. Tate LM, Tsai PF, Landes RD, Rettiganti M, Lefler LL. Temporal discounting rates and their relation to exercise behavior in older adults. Physiol Behav. 2015;152(Pt A):295–299. doi: 10.1016/j.physbeh.2015.10.003.
    1. Kirby KN, Petry NM. Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction. 2004;99(4):461–471. doi: 10.1111/j.1360-0443.2003.00669.x.
    1. Sushames A, Edwards A, Thompson F, McDermott R, Gebel K. Validity and reliability of Fitbit flex for step count, moderate to vigorous physical activity and activity energy expenditure. PLoS One. 2016;11(9):e0161224. doi: 10.1371/journal.pone.0161224.
    1. Alharbi M, Bauman A, Neubeck L, Gallagher R. Validation of Fitbit-flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. Eur J Prev Cardiol. 2016;23(14):1476–1485. doi: 10.1177/2047487316634883.
    1. Kooiman TJ, Dontje ML, Sprenger SR, Krijnen WP, van der Schans CP, de Groot M. Reliability and validity of ten consumer activity trackers. BMC Sports Sci Med Rehabil. 2015;7:24. doi: 10.1186/s13102-015-0018-5.
    1. Marshall SJ, Levy SS, Tudor-Locke CE, Kolkhorst FW, Wooten KM, Ji M, Macera CA, Ainsworth BE. Translating physical activity recommendations into a pedometer-based step goal: 3000 steps in 30 minutes. Am J Prev Med. 2009;36(5):410–415. doi: 10.1016/j.amepre.2009.01.021.
    1. Tudor-Locke C, Sisson SB, Collova T, Lee SM, Swan PD. Pedometer-determined step count guidelines for classifying walking intensity in a young ostensibly healthy population. Can J Appl Physiol. 2005;30(6):666–676. doi: 10.1139/h05-147.
    1. Finkelstein EA, Haaland BA, Bilger M, Sahasranaman A, Sloan RA, Nang EE, Evenson KR. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4(12):983–995. doi: 10.1016/S2213-8587(16)30284-4.
    1. Charness GB, Gneezy U. Incentives to exercise. Econometrica. 2009;77(3):909–931. doi: 10.3982/ECTA7416.
    1. Strohacker K, Galarraga O, Williams DM. The impact of incentives on exercise behavior: a systematic review of randomized controlled trials. Ann Behav Med. 2014;48(1):92–99. doi: 10.1007/s12160-013-9577-4.

Source: PubMed

3
S'abonner