Optimizing the Femoral Offset for Restoring Physiological Hip Muscle Function in Patients With Total Hip Arthroplasty

Xiangjun Hu, Nan Zheng, Yunsu Chen, Kerong Dai, Dimitris Dimitriou, Huiwu Li, Tsung-Yuan Tsai, Xiangjun Hu, Nan Zheng, Yunsu Chen, Kerong Dai, Dimitris Dimitriou, Huiwu Li, Tsung-Yuan Tsai

Abstract

Objective: Femoral offset (FO) restoration is significantly correlated with functional recovery following total hip arthroplasty (THA). Accurately assessing the effects of FO changes on hip muscles following THA would help improve function and optimize functional outcomes. The present study aimed to (1) identify the impact of FO side difference on the hip muscle moment arms following unilateral THA during gait and (2) propose the optimal FO for a physiological hip muscle function.

Methods: In vivo hip kinematics from eighteen unilateral THA patients during gait were measured with a dual-fluoroscopic imaging system. The moment arms of thirteen hip muscles were calculated using CT-based 3D musculoskeletal models with the hip muscles' lines of actions. The correlation coefficient (R) between FO and hip muscle moment arm changes compared with the non-implanted hip was calculated. We considered that the FO reconstruction was satisfactory when the abductor moment arms increased, while the extensor, adductor, and flexor moment arms decreased less than 5%.

Results: A decreased FO following THA was significantly correlated with a decrease of the abductor and external rotator moment arms during the whole gait (R > 0.5) and a decrease of extensor moment arms during the stance phase (R > 0.4). An increased FO following THA was significantly associated with shorter flexor moment arms throughout the gait (R < -0.5) and shorter adductor moment arms in the stance phase (R < -0.4). An increase in FO of 2.3-2.9 mm resulted in increased abductor moment arms while maintaining the maximum decrease of the hip muscles at less than 5.0%.

Conclusion: An increase of 2-3 mm in FO could improve the abductor and external rotator function following a THA. Accurate surgical planning with optimal FO reconstruction is essential to restoring normal hip muscle function in THA patients.

Keywords: biomechanics; femoral offset; hip muscles; moment arm; total hip arthroplasty.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Hu, Zheng, Chen, Dai, Dimitriou, Li and Tsai.

Figures

FIGURE 1
FIGURE 1
A virtual DFIS environment is constructed following the projection parameters obtained from the calibration procedure. The two-projection line intersection from two X-ray sources to the hip joint center determines the 3D skeletal models’ position. The FO was defined as the perpendicular distance from the femoral head’s rotation center to the femoral long axis.
FIGURE 2
FIGURE 2
The pelvic and femoral bone models with the skeletal hip muscle lines of action. (A) The abductor and adductor include gluteus medius [anterior bundle (1, GMDA), median bundle (2, GMDM), posterior bundle (3, GMDP)], gluteus minimus [anterior bundle (4, GMIA), median bundle (5, GMIM), posterior bundle (6, GMIP)], adductor brevis (7, AB), and pectineus (8, PT). (B) The extensor muscle group include the gluteus maximus [anterior bundles (9, GMXA), median bundles (10, GMXM), posterior bundles (11, GMXP)]. The flexor muscle group includes the iliacus (12) and psoas (13). (C) The external rotation muscle group includes the gemellus superior (14, GS), gemellus inferior (15, GI), obturator internus (16, OI), obturator externus (17, OE), piriformis (18, PF), and quadratus femoris (19, QF). The muscle moment arm was defined as the femoral head’s rotation center perpendicular distance to each muscle simulation line. The moment arm of GMIP was shown at the arrow.
FIGURE 3
FIGURE 3
The changes in the correlation coefficient (R) between FO difference and hip muscle moment arm difference compared with non-implanted hip in THA patients were illustrated during gait. (A) Gluteus maximus anterior bundle (GMXA), (B) gluteus maximus median bundle (GMXM), (C) gluteus maximus posterior bundle (GMXP), (D) gluteus medius anterior bundle (GMDA), (E) gluteus medius median bundle (GMDM), (F) gluteus medius posterior bundle (GMDP), (G) gluteus minimus anterior bundle (GMIA), (H) gluteus minimus median bundle (GMIM), (I) gluteus minimus posterior bundle (GMIP), (J) adductor brevis (AB), (K) pectineus (PT), (L) gemellus superior (GS), (M) gemellus inferior (GI), (N) obturator internus (OI), (O) obturator externus (OE), (P) piriformis (PF), (Q) quadratus femoris (QF), (R) iliacus, and (S) psoas. Nearly 60% of the black vertical dashed lines indicate toe-off. Areas of statistical significance were represented by the bold red line along the X-axis of each graph. X-axis: percentage of the gait cycle, Y-axis: R values.
FIGURE 4
FIGURE 4
The simple linear regression curve showed the highest correlations of the moment arm change ratio [Moment Arm (%)] with the FO difference (DFO) during gait. (A) Gluteus maximus anterior bundle (GMXA), (B) gluteus maximus median bundle (GMXM), (C) gluteus maximus posterior bundle (GMXP), (D) gluteus medius anterior bundle (GMDA), (E) gluteus medius median bundle (GMDM), (F) gluteus medius posterior bundle (GMDP), (G) gluteus minimus anterior bundle (GMIA), (H) gluteus minimus median bundle (GMIM), (I) gluteus minimus posterior bundle (GMIP), (J) adductor brevis (AB), (K) pectineus (PT), (L) gemellus superior (GS), (M) gemellus inferior (GI), (N) obturator internus (OI), (O) obturator externus (OE), (P) piriformis (PF), (Q) quadratus femoris (QF), (R) (iliacus), and (S) psoas. The saltire represented the data of one subject during gait. p: significant level, r2: coefficient of determination.

References

    1. Arnold A. S., Salinas S., Asakawa D. J., Delp S. L. (2000). Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5 108–119. 10.1002/1097-015020005:2<108::Aid-igs5<;2-2
    1. Bahl J. S., Nelson M. J., Taylor M., Solomon L. B., Arnold J. B., Thewlis D. (2018). Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 26 847–863. 10.1016/j.joca.2018.02.897
    1. Bjordal F., Bjorgul K. (2015). The role of femoral offset and abductor lever arm in total hip arthroplasty. J. Orthop. Traumatol. 16 325–330. 10.1007/s10195-015-0358-7
    1. Brand R. A., Crowninshield R. D., Wittstock C. E., Pedersen D. R., Clark C. R., van Krieken F. M. (1982). A model of lower extremity muscular anatomy. J. Biomech. Eng. 104 304–310. 10.1115/1.3138363
    1. Dorr L. D., Wolf A. W., Chandler R., Conaty J. P. (1983). Classification and treatment of dislocations of total hip arthroplasty. Clin. Orthop. Relat. Res. 173 151–158.
    1. Dostal W. F., Andrews J. G. (1981). A three-dimensional biomechanical model of hip musculature. J. Biomech. 14 803–812. 10.1016/0021-9290(81)90036-1
    1. Girard J., Lavigne M., Vendittoli P. A., Roy A. G. (2006). Biomechanical reconstruction of the hip: a randomised study comparing total hip resurfacing and total hip arthroplasty. J. Bone Joint Surg. Br. 88 721–726. 10.1302/0301-620x.88b6.17447
    1. Hernando M. F., Cerezal L., Pérez-Carro L., Abascal F., Canga A. (2015). Deep gluteal syndrome: anatomy, imaging, and management of sciatic nerve entrapments in the subgluteal space. Skeletal Radiol. 44 919–934. 10.1007/s00256-015-2124-6
    1. Hu X., Zheng N., Hsu W. C., Zhang J., Li H., Chen Y., et al. (2020). Adverse effects of total hip arthroplasty on the hip abductor and adductor muscle lengths and moment arms during gait. J. Orthop. Surg. Res. 15:315. 10.1186/s13018-020-01832-1
    1. Kiyama T., Naito M., Shinoda T., Maeyama A. (2010). Hip abductor strengths after total hip arthroplasty via the lateral and posterolateral approaches. J. Arthroplasty 25 76–80. 10.1016/j.arth.2008.11.001
    1. Kolk S., Minten M. J., van Bon G. E., Rijnen W. H., Geurts A. C., Verdonschot N., et al. (2014). Gait and gait-related activities of daily living after total hip arthroplasty: a systematic review. Clin. Biomech. (Bristol, Avon) 29 705–718. 10.1016/j.clinbiomech.2014.05.008
    1. Liebs T. R., Nasser L., Herzberg W., Ruther W., Hassenpflug J. (2014). The influence of femoral offset on health-related quality of life after total hip replacement. Bone Joint J. 96-b 36–42. 10.1302/0301-620x.96b1.31530
    1. Little N. J., Busch C. A., Gallagher J. A., Rorabeck C. H., Bourne R. B. (2009). Acetabular polyethylene wear and acetabular inclination and femoral offset. Clin. Orthop. Relat. Res. 467 2895–2900. 10.1007/s11999-009-0845-3
    1. Mahmood S. S., Mukka S. S., Crnalic S., Wretenberg P., Sayed-Noor A. S. (2016). Association between changes in global femoral offset after total hip arthroplasty and function, quality of life, and abductor muscle strength. A prospective cohort study of 222 patients. Acta Orthop. 87 36–41. 10.3109/17453674.2015.1091955
    1. Malviya A., Lingard E. A., Malik A., Bowman R., Holland J. P. (2010). Hip flexion after Birmingham hip resurfacing: role of cup anteversion, anterior femoral head-neck offset, and head-neck ratio. J. Arthroplasty 25 387–391. 10.1016/j.arth.2009.01.026
    1. McGrory B. J., Morrey B. F., Cahalan T. D., An K. N., Cabanela M. E. (1995). Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J. Bone Joint Surg. Br. 77 865–869. 10.1302/0301-620x.77b6.7593096
    1. Michaelsson K. (2014). Surgeon volume and early complications after primary total hip arthroplasty. BMJ 348:g3433. 10.1136/bmj.g3433
    1. Nankaku M. P. P., Tsuboyama T. P. M., Aoyama T. P. M., Kuroda Y. P. M., Ikeguchi R. P. M., Matsuda S. P. M. (2016). Preoperative gluteus medius muscle atrophy as a predictor of walking ability after total hip arthroplasty. Phys. Ther. Res. 19 8–12. 10.1298/ptr.e9884
    1. Neumann D. A. (2010). Kinesiology of the hip: a focus on muscular actions. J. Orthop. Sports Phys. Ther. 40 82–94. 10.2519/jospt.2010.3025
    1. Park K. K., Tsai T. Y., Dimitriou D., Kwon Y. M. (2016). Three-dimensional in vivo difference between native acetabular version and acetabular component version influences iliopsoas impingement after total hip arthroplasty. Int. Orthop. 40 1807–1812. 10.1007/s00264-015-3055-5
    1. Pierchon F., Pasquier G., Cotten A., Fontaine C., Clarisse J., Duquennoy A. (1994). Causes of dislocation of total hip arthroplasty. CT study of component alignment. J. Bone Joint Surg. Br. 76 45–48. 10.1302/0301-620x.76b1.8300680
    1. Rasch A., Dalén N., Berg H. E. (2010). Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA. Acta Orthop. 81 183–188. 10.3109/17453671003793204
    1. Renkawitz T., Weber T., Dullien S., Woerner M., Dendorfer S., Grifka J., et al. (2016). Leg length and offset differences above 5mm after total hip arthroplasty are associated with altered gait kinematics. Gait. Posture 49 196–201. 10.1016/j.gaitpost.2016.07.011
    1. Rudiger H. A., Guillemin M., Latypova A., Terrier A. (2017). Effect of changes of femoral offset on abductor and joint reaction forces in total hip arthroplasty. Arch. Orthop. Trauma Surg. 137 1579–1585. 10.1007/s00402-017-2788-6
    1. Sakalkale D. P., Sharkey P. F., Eng K., Hozack W. J., Rothman R. H. (2001). Effect of femoral component offset on polyethylene wear in total hip arthroplasty. Clin. Orthop. Relat. Res. 388 125–134. 10.1097/00003086-200107000-00019
    1. Sariali E., Klouche S., Mouttet A., Pascal-Moussellard H. (2014). The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop. 85 123–127. 10.3109/17453674.2014.889980
    1. Schmalzried T. P., Shepherd E. F., Dorey F. J., Jackson W. O., dela Rosa M., Fa’vae F., et al. (2000). The John Charnley Award. Wear is a function of use, not time. Clin. Orthop. Relat. Res. 381 36–46. 10.1097/00003086-200012000-00005
    1. Shapira J., Chen S. L., Rosinsky P. J., Maldonado D. R., Lall A. C., Domb B. G. (2020a). Outcomes of outpatient total hip arthroplasty: a systematic review. Hip Int. 31 4–11. 10.1177/1120700020911639
    1. Shapira J., Chen S. L., Rosinsky P. J., Maldonado D. R., Meghpara M., Lall A. C., et al. (2020b). The effect of postoperative femoral offset on outcomes after hip arthroplasty: a systematic review. J. Orthop. 22 5–11. 10.1016/j.jor.2020.03.034
    1. Tsai T. Y., Dimitriou D., Li J. S., Woo Nam K., Li G., Kwon Y. M. (2015). Asymmetric hip kinematics during gait in patients with unilateral total hip arthroplasty: in vivo 3-dimensional motion analysis. J. Biomech. 48 555–559. 10.1016/j.jbiomech.2015.01.021
    1. Tsai T.-Y., Li J.-S., Wang S., Lin H., Malchau H., Li G., et al. (2013). A novel dual fluoroscopic imaging method for determination of THA kinematics: in-vitro and in-vivo study. J. Biomech. 46 1300–1304. 10.1016/j.jbiomech.2013.02.010
    1. Tsai T. Y., Li J. S., Wang S., Scarborough D., Kwon Y. M. (2014). In-vivo 6 degrees-of-freedom kinematics of metal-on-polyethylene total hip arthroplasty during gait. J. Biomech. 47 1572–1576. 10.1016/j.jbiomech.2014.03.012
    1. Wu G., Siegler S., Allard P., Kirtley C., Leardini A., Rosenbaum D., et al. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. J. Biomech. 35 543–548. 10.1016/s0021-9290(01)00222-6
    1. Yi L. H., Li R., Zhu Z. Y., Bai C. W., Tang J. L., Zhao F. C., et al. (2019). Anatomical study based on 3D-CT image reconstruction of the hip rotation center and femoral offset in a Chinese population: preoperative implications in total hip arthroplasty. Surg. Radiol. Anat. 41 117–124. 10.1007/s00276-018-2143-9

Source: PubMed

3
S'abonner