Succeeding with prolonged usage of consumer-based activity trackers in clinical studies: a mixed methods approach

André Henriksen, Anne-Sofie Sand, Trygve Deraas, Sameline Grimsgaard, Gunnar Hartvigsen, Laila Hopstock, André Henriksen, Anne-Sofie Sand, Trygve Deraas, Sameline Grimsgaard, Gunnar Hartvigsen, Laila Hopstock

Abstract

Background: Lack of physical activity (PA) is a risk factor for death and non-communicable disease. Despite this, more than one fourth of adults worldwide do not follow PA guidelines. As part of a feasibility study to test a complex intervention for increasing PA, we included a consumer-based activity tracker (AT) as a tool to measure PA outcomes and to track heart rate during exercise sessions. The aim of the present study was to identify factors that increase wear time when using a consumer-based AT for monitoring of participants in clinical research.

Methods: Sixteen participants aged 55-74 years, with obesity, sedentary lifestyle, and elevated cardiovascular risk were recruited to a 12-month feasibility study. Participants wore a Polar M430 AT to collect continuous PA data during a six-month intervention followed by 6 months of follow-up. We performed quantitative wear time analysis, tested the validity of the AT, and completed two rounds of qualitative interviews to investigate how individual wear-time was linked to participant responses.

Results: From 1 year of tracking, mean number of valid wear days were 292 (SD = 86), i.e. 80%. The Polar M430 provides acceptable measurements for total energy expenditure. Motivations for increased wear time were that participants were asked to wear it and the ability to track PA progress. Perceived usefulness included time keeping, heart rate- and sleep tracking, becoming more conscious about day-to-day activity, and improved understanding of which activity types were more effective for energy expenditure. Sources of AT annoyance were measurement inaccuracies and limited instruction for use. Suggestions for improvement were that the AT was big, unattractive, and complicated to use.

Conclusions: Adherence to wearing a consumer-based AT was high. Results indicate that it is feasible to use a consumer-based AT to measure PA over a longer period. Potential success factors for increased wear time includes adequate instruction for AT use, allowing participants to choose different AT designs, and using trackers with accurate measurements. To identify accurate trackers, AT validation studies in the target cohort may be needed.

Trial registration: U.S. National Library of Medicine, Clinical Trial registry: NCT03807323 ; Registered 16 September 2019 - Retrospectively registered.

Keywords: Actigraphy; Activity trackers; Clinical trial; Human activity; Intervention study; Motor activity; Polar M430.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Activity tracker wear time for 1 year of recording

References

    1. Global Recommendations on Physical Activity for Health. Geneva: World Health Organization; 2010. Available from: .
    1. World Health Organization . Fact sheet: physical activity. 2018.
    1. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, Lancet Physical Activity Series Working G Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–257.
    1. World Health Organization . Global status report on noncommunicable diseases 2014. 2017.
    1. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018;6(10):e1077–e1e86.
    1. Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W, Pratt M, Lancet Physical Activity Series 2 Executive C The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet. 2016;388(10051):1311–1324.
    1. Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, Casanova A, Swaminathan S, Anjana RM, Kumar R, Rosengren A, Wei L, Yang W, Chuangshi W, Huaxing L, Nair S, Diaz R, Swidon H, Gupta R, Mohammadifard N, Lopez-Jaramillo P, Oguz A, Zatonska K, Seron P, Avezum A, Poirier P, Teo K, Yusuf S. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390(10113):2643–2654.
    1. Silfee VJ, Haughton CF, Jake-Schoffman DE, Lopez-Cepero A, May CN, Sreedhara M, Rosal MC, Lemon SC. Objective measurement of physical activity outcomes in lifestyle interventions among adults: a systematic review. Prev Med Rep. 2018;11:74–80.
    1. Shin G, Jarrahi MH, Fei Y, Karami A, Gafinowitz N, Byun A, Lu X. Wearable activity trackers, accuracy, adoption, acceptance and health impact: a systematic literature review. J Biomed Inform. 2019;93:103153.
    1. Wright SP, Hall Brown TS, Collier SR, Sandberg K. How consumer physical activity monitors could transform human physiology research. Am J Physiol Regul Integr Comp Physiol. 2017;312(3):R358–RR67.
    1. Bunn JA, Navalta JW, Fountaine CJ, Reece JD. Current state of commercial wearable technology in physical activity monitoring 2015–2017. Int J Exerc Sci. 2018;11(7):503–515.
    1. Feehan LM, Geldman J, Sayre EC, Park C, Ezzat AM, Yoo JY, Hamilton CB, Li LC. Accuracy of Fitbit devices: systematic review and narrative syntheses of quantitative data. JMIR Mhealth Uhealth. 2018;6(8):e10527.
    1. Straiton N, Alharbi M, Bauman A, Neubeck L, Gullick J, Bhindi R, Gallagher R. The validity and reliability of consumer-grade activity trackers in older, community-dwelling adults: a systematic review. Maturitas. 2018;112:85–93.
    1. Brickwood KJ, Watson G, O'Brien J, Williams AD. Consumer-based wearable activity trackers increase physical activity participation: systematic review and meta-analysis. JMIR Mhealth Uhealth. 2019;7(4):e11819.
    1. de Vries HJ, Kooiman TJ, van Ittersum MW, van Brussel M, de Groot M. Do activity monitors increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis. Obesity (Silver Spring) 2016;24(10):2078–2091.
    1. Lewis ZH, Lyons EJ, Jarvis JM, Baillargeon J. Using an electronic activity monitor system as an intervention modality: a systematic review. BMC Public Health. 2015;15(1):585.
    1. Schrager JD, Shayne P, Wolf S, Das S, Patzer RE, White M, Heron S. Assessing the influence of a Fitbit physical activity monitor on the exercise practices of emergency medicine residents: a pilot study. JMIR Mhealth Uhealth. 2017;5(1):e2.
    1. Carmichael H, Overbey DM, Hosokawa P, Goode CM, Jones TS, Barnett CC, Jr, Jones EL, Robinson TN. Wearable technology-a pilot study to define “normal” postoperative recovery trajectories. J Surg Res. 2019;244:368–373.
    1. Patel MS, Benjamin EJ, Volpp KG, Fox CS, Small DS, Massaro JM, Lee JJ, Hilbert V, Valentino M, Taylor DH, Manders ES, Mutalik K, Zhu J, Wang W, Murabito JM. Effect of a game-based intervention designed to enhance social incentives to increase physical activity among families: the BE FIT randomized clinical trial. JAMA Intern Med. 2017;177(11):1586–1593.
    1. Halse RE, Shoneye CL, Pollard CM, Jancey J, Scott JA, Pratt IS, Dhaliwal SS, Norman R, Straker LM, Boushey CJ, Delp EJ, Zhu F, Harray AJ, Szybiak MA, Finch A, McVeigh JA, Mullan B, Collins CE, Mukhtar SA, Edwards KN, Healy JD, Kerr DA. Improving nutrition and activity behaviors using digital technology and tailored feedback: protocol for the LiveLighter Tailored Diet and Activity (ToDAy) randomized controlled trial. JMIR Res Protoc. 2019;8(2):e12782.
    1. Maxwell-Smith C, Cohen PA, Platell C, Tan P, Levitt M, Salama P, Makin GB, Tan J, Salfinger S, Kader Ali Mohan GR, Kane RT, Hince D, Jimenez-Castuera R, Hardcastle SJ. Wearable Activity Technology And Action-Planning (WATAAP) to promote physical activity in cancer survivors: randomised controlled trial protocol. Int J Clin Health Psychol. 2018;18(2):124–132.
    1. Maxwell-Smith C, Hince D, Cohen PA, Bulsara MK, Boyle T, Platell C, Tan P, Levitt M, Salama P, Tan J, Salfinger S, Makin G, Mohan G, Jimenez-Castuera R, Hardcastle SJ. A randomized controlled trial of WATAAP to promote physical activity in colorectal and endometrial cancer survivors. Psychooncology. 2019;28(7):1420–1429.
    1. Phillips SM, Cadmus-Bertram L, Rosenberg D, Buman MP, Lynch BM. Wearable technology and physical activity in chronic disease: opportunities and challenges. Am J Prev Med. 2018;54(1):144–150.
    1. Creswell JW. Research design. qualitative, quantitative, & mixed method approaches. 4. Los Angeles, London, New Delhi, Singapore, Washington DC: SAGE publications; 2014.
    1. Jacobsen BK, Eggen AE, Mathiesen EB, Wilsgaard T, Njolstad I. Cohort profile: the Tromso study. Int J Epidemiol. 2012;41(4):961–967.
    1. Nordic Council of Ministers . Nordic nutrition recommendations 2012: integrating nutrition and physical activity. 2014.
    1. Sheeran P, Webb TL. The intention-behavior gap. Soc Personal Psychol Compass. 2016;10(9):503–518. doi: 10.1111/spc3.12265.
    1. Deraas TS, Hopstock L, Henriksen A, Morseth B, Sand A-S, Njølstad I, Pedersen S, Sagelv E, Johansson J, Grimsgaard S. Complex lifestyle intervention among inactive older adults with elevated cardiovascular disease risk and obesity. 2020. PREPRINT (Version 1) available at Research Square, 10.21203/-39292/v1.
    1. Henriksen A, Grimsgaard S, Horsch A, Hartvigsen G, Hopstock L. Validity of the polar M430 activity monitor in free-living conditions: validation study. JMIR Form Res. 2019;3(3):e14438.
    1. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011;14(5):411–416.
    1. Lee J, Finkelstein J. Consumer sleep tracking devices: a critical review. Stud Health Technol Inform. 2015;210:458–460.
    1. McMinn D, Acharya R, Rowe DA, Gray SR, Allan JL. Measuring activity energy expenditure: accuracy of the GT3X+ and actiheart monitors. Int J Exerc Sci. 2013;6(3):5.
    1. Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39(Suppl 1):5–41.
    1. Polar Electro . Polar flow. 2018.
    1. Pugliese L, Woodriff M, Crowley O, Lam V, Sohn J, Bradley S. Feasibility of the “bring your own device” model in clinical research: results from a randomized controlled pilot study of a mobile patient engagement tool. Cureus. 2016;8(3):e535.
    1. Braun V, Clarke V. What can “thematic analysis” offer health and wellbeing researchers? Int J Qual Stud Health Well-being. 2014;9:26152.
    1. Kvale S, Brinkmann S. Interviews. Learning the craft of qualitative research interviewing. 2. Los Angeles, London, New Delhi, Singapore: SAGE publications; 2009.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188.
    1. Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456.
    1. Evans JD. Straightforward Statistics for the Behavioral Sciences. Pacific Grove: Brooks/Cole Publishing; 1996.
    1. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–160.
    1. Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101.
    1. Fereday J, Muir-Cochrane E. Demonstrating rigor using thematic analysis: a hybrid approach of inductive and deductive coding and theme development. Int J Qual Methods. 2016;5(1):80–92.
    1. Berenguer A, Goncalves J, Hosio S, Ferreira D, Anagnostopoulos T, Kostakos V. Are smartphones ubiquitous?: an in-depth survey of smartphone adoption by seniors. IEEE Consum Electron Mag. 2017;6(1):104–110.
    1. Duignan C, Slevin P, Sett N, Caulfield B. Consumer wearable deployments in actigraphy research: evaluation of an observational study. JMIR Mhealth Uhealth. 2019;7(6):e12190.
    1. Hermsen S, Moons J, Kerkhof P, Wiekens C, De Groot M. Determinants for sustained use of an activity tracker: observational study. JMIR Mhealth Uhealth. 2017;5(10):e164.
    1. Henriksen A, Johansson J, Hartvigsen G, Grimsgaard S, Hopstock L. Measuring physical activity using triaxial wrist worn polar activity trackers: a systematic review. Int J Exerc Sci. 2020;13(4):438–454.
    1. Poehlman ET. A review: exercise and its influence on resting energy metabolism in man. Med Sci Sports Exerc. 1989;21(5):515–525.
    1. Attig C, Franke T. Abandonment of personal quantification: a review and empirical study investigating reasons for wearable activity tracking attrition. Comput Hum Behav. 2020;102:223–237.
    1. Vogels EA. About one-in-five Americans use a smart watch or fitness tracker. 2020.
    1. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28(3):R1–39.
    1. Hardcastle SJ, Galliott M, Lynch BM, Nguyen NH, Cohen PA, Mohan GR, Johansen NJ, Saunders C. Acceptability and utility of, and preference for wearable activity trackers amongst non-metropolitan cancer survivors. PLoS One. 2018;13(12):e0210039.
    1. Mercer K, Giangregorio L, Schneider E, Chilana P, Li M, Grindrod K. Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: a mixed-methods evaluation. JMIR Mhealth Uhealth. 2016;4(1):e7.
    1. McMahon SK, Lewis B, Oakes M, Guan W, Wyman JF, Rothman AJ. Older adults’ experiences using a commercially available monitor to self-track their physical activity. JMIR Mhealth Uhealth. 2016;4(2):e35.
    1. Smith A. Older Adults and Technology Use. Pew Research Center. 2014. Available at: .
    1. Puri A, Kim B, Nguyen O, Stolee P, Tung J, Lee J. User acceptance of wrist-worn activity trackers among community-dwelling older adults: mixed method study. JMIR Mhealth Uhealth. 2017;5(11):e173.
    1. Graneheim UH, Lundman B. Qualitative content analysis in nursing research: concepts, procedures and measures to achieve trustworthiness. Nurse Educ Today. 2004;24(2):105–112.
    1. McMurdo ME, Roberts H, Parker S, Wyatt N, May H, Goodman C, Jackson S, Gladman J, O'Mahony S, Ali K, Dickinson E, Edison P, Dyer C, Age, Ageing Specialty Group NCCRN Improving recruitment of older people to research through good practice. Age Ageing. 2011;40(6):659–665.
    1. Tromsøundersøkelsen . Tromsøundersøkelsen. 2020.

Source: PubMed

3
S'abonner