Long-term effects of vitamin D supplementation in vitamin D deficient obese children participating in an integrated weight-loss programme (a double-blind placebo-controlled study) - rationale for the study design

Agnieszka Szlagatys-Sidorkiewicz, Michał Brzeziński, Agnieszka Jankowska, Paulina Metelska, Magdalena Słomińska-Frączek, Piotr Socha, Agnieszka Szlagatys-Sidorkiewicz, Michał Brzeziński, Agnieszka Jankowska, Paulina Metelska, Magdalena Słomińska-Frączek, Piotr Socha

Abstract

Background: Obesity is associated not only with an array of metabolic disorders (e.g. insulin resistance, hiperinsulinemia, impaired tolerance of glucose, lipid disorders) but also skeletal and joint abnormalities. Recently, a pleiotropic role of vitamin D has been emphasized. Obese children frequently present with vitamin D deficiency, and greater fat mass is associated with lower serum concentration of this vitamin. Although some evidence suggests that weight loss may affect vitamin D status, this issue has not been studied extensively thus far. The aim of a double-blind placebo-controlled study is to assess long-term health effects of vitamin D supplementation in vitamin D deficient obese children participating in an integrated weight-loss programme.

Methods: A randomized double-blind, placebo-controlled trial analysing the effects of vitamin D3 supplementation in overweight or obese vitamin D deficient (<30 ng/ml) children participating in an integrated weight-loss programme. Children are randomized to receive either vitamin D (1200 IU) or placebo for 26 weeks. Primary endpoints include changes in BMI (body mass index), body composition and bone mineral density at the end of the study period, and secondary endpoints - the changes in laboratory parameter reflecting liver and kidney function (transaminases, creatinine) and glucose homeostasis (glucose and insulin levels during oral glucose tolerance test).

Discussion: The effects of vitamin D supplementation in obese individuals, especially children, subjected to a weight-loss program are still poorly understood. Considering physiological processes associated with puberty and adolescent growth, we speculate that supplementation may enhance weight reduction and prevent bone loss in obese children deficient in this vitamin.

Trial registration: NCT 02828228 ; Trial registration date: 8 Jun 2016; Registered in: ClinicalTrials.gov. The trial was registered retrospectively.

Trial registration: ClinicalTrials.gov NCT02828228.

Keywords: Body composition; Obesity; Vitamin D; Weight loss.

Figures

Fig. 1
Fig. 1
Patient flow chart
Fig. 2
Fig. 2
Study flow chart

References

    1. Nemet D, Levi L, Panatowitz M, Eliakim A. A combined nutritional-behavioral-physical intervention for the treatment of childhood obesity – a 7-year summary. J Pediatr Endocrinol Metab. 2014;24:1–7.
    1. Oude Luttikhuis H, Baur L, Jansen H, Shrewsbury VA, O’Malley C, Stolk RP, Summerbell CD. Interventions for treating obesity in children. Cochrane Database Syst Rev. 2009;1:CD001872.
    1. Masquio DC, de Piano A, Campos RM, Sanches L, Carnier J, Corgosinho FC, et al. The role of multicomponent therapy in the metabolic syndrome, inflammation and cardiovascular risk in obese adolescents. Br J Nutr. 2015;113(12):1920–1930. doi: 10.1017/S0007114515001129.
    1. De Lima SP, de Mello MT, Elias N, Fonseca FA, de Piano A, et al. Improvement in HOMA-IR is an independent predictor of reduced carotid intima-media thickness in obese adolescents participating in an interdisciplinary weight-loss program. Hypertens Res. 2011;34:232–238. doi: 10.1038/hr.2010.225.
    1. Masquio DC, de Piano A, Sanches PL, Corgosinho FC, Campos RM, Carnier J, et al. The effect of weight loss magnitude on pro−/anti-inflammatory adipokines and carotid intima-media thickness in obese adolescents engaged in interdisciplinary weight loss therapy. Clin Endorinol (Oxf) 2013;79:55–64. doi: 10.1111/j.1365-2265.2012.04504.x.
    1. Reinehr T. Calculating cardiac risk in obese adolescents before and after onset of life style intervention. Expert Rev Cardiovasc Ther. 2013;11:297–306. doi: 10.1586/erc.13.6.
    1. Aypak C, Turedi O, Yuce A. The association of vitamin D status with cardiometabolic risk factors, obesity and puberty in children. Eur J Pediatr. 2014;173:367–373. doi: 10.1007/s00431-013-2177-2.
    1. Lee SH, Kim SM, Park HS, Choi KM, Cho GJ, Ko BJ, et al. Serum 25-hydroxyvitamin D levels obesity and the metabolic syndrome among Korean children. Nutr Metab Cardiovasc Dis. 2013;23:785–791. doi: 10.1016/j.numecd.2012.04.013.
    1. Sioen I, Mouratidou T, Kaufman JM, Bammann K, Michels N, Piget I, et al. IDEFICS consortium. Determinants of vitamin D status in young childre: results from the Belgian arm of the IDEFICS study. Public Health Nutr. 2012;15:1093–1099. doi: 10.1017/S1368980011002989.
    1. Kamycheva E, Joakimsen RM, Jorde R. Intakes of calcium and vitamin d predict body mass index in the population of northern Norway. J Nutr. 2003;133:102–106.
    1. Kull M, Kallikorm R, Lember M. Body mass index determines sunbathing habits: implications on vitamin D levels. Intern Med J. 2009;39:256–258. doi: 10.1111/j.1445-5994.2009.01900.x.
    1. Pacifico L, Anania C, Osborn JF, Ferraro F, Bonci E, Olivero E, et al. Low 25(OH)D3 levels are associated with total adiposity, metabolic syndrome, and hypertension in Caucasian children and adolescents. Eur J Endorinol. 2011;165:603–611. doi: 10.1530/EJE-11-0545.
    1. Rosenstreich SJ, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50:679–687. doi: 10.1172/JCI106538.
    1. Verrijn Stuart AA, van Summeren M, Rakhshandehroo M, Nuboer R, de Boer FK, et al. Vitamin D deficiency in childhood obesity is associated with high levels of circulating inflammatory mediators, and low insulin sensitivity. Int J Obes. 2014;38:46–52. doi: 10.1038/ijo.2013.75.
    1. Ganji V, Zhang X, Shaikh N, Tangpricha V. Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001-2006. Am J Clin Nutr. 2011;94:225–233. doi: 10.3945/ajcn.111.013516.
    1. Song Y, Wang L, Pittas AG, Del Gobbo LC, Zhang C, Manson JE, et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2013;36:1422–1428. doi: 10.2337/dc12-0962.
    1. Almezadeh R, Kichler J, Babar G, Calhoun M. Hypovitaminosis in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism. 2008;57:183–191. doi: 10.1016/j.metabol.2007.08.023.
    1. Belenchia AM, Tosh AK, Hillman LS, Peterson CA. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: a randomized controlled trial. M J Clin Nutr. 2013;97:774–781.
    1. Goulding A, Taylor RW, Jones IE, McAuley KA, Maning PJ, WIliams SM. Overweight and obese chilldren have low bone mass and area for their weight. Int J Obes Relat Metab Disord. 2000;24:627–632. doi: 10.1038/sj.ijo.0801207.
    1. El Hage R, Jacob C, Moussa E, Benhamou CL, Jaffre C. Total body, lumbar spine and hip bone mineral density in overweight adolescent girls: decreased or increased? J Bone Miner Metab. 2009;27:629–633. doi: 10.1007/s00774-009-0074-6.
    1. El Hage R, El Hage Z, Jacob C, Moussa E, Theunynck D, Baddoura R. Bone mineral content and density in overweight and control adolescent boys. J Clin Desitom. 2011;14:122–128. doi: 10.1016/j.jocd.2011.01.003.
    1. Leonrd MB, Shults J, Wilson BA, Terhakovec AM, Zemel BS. Obesity during childhood and adolescence augments bone mass and bone dimension. Am J Clin Nutr. 2004;80:514–523.
    1. Kessler J, Koebnick C, Smith N, Adams A. Childhood obesity is associated with increased risk of most lower extremity fractures. Clin Orthop Relat Res. 2013;471:1199–1207. doi: 10.1007/s11999-012-2621-z.
    1. Liu K, Liu P, Liu R, Wu X, Cai M. Relationship between serum leptin levels and bone mineral density: a systematic review and meta-analysis. Clin Chim Acta. 2015;15(444):260–263. doi: 10.1016/j.cca.2015.02.040.
    1. Maggio AB, Belli DC, Puigdefabregas JW, Farpour-Lambert NJ, Beghetti M, McLin VA. High bone density in obese adolescents is related to fat mass and serum leptin concentration. J Pediatr Gastroenterol Nutr. 2014;58:723–728.
    1. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;21:35–43. doi: 10.1038/ncprheum0070.
    1. Cashman KD, Hill TR, Cotter AA, Boreham CA, Dubitzky W, Murray L, Strain J, et al. Low vitamin D status adversly affects bone health parameters in adolscents. Am J Clin Nutr. 2008;87:1039–1044.
    1. Pekkinen M, Vilijakinen H, Saarnio E, Lamberg-Allardt C, Makitie O. Vitamin D is a major determinant of bone mineral density at school age. PLoS One. 2012;7:40090. doi: 10.1371/journal.pone.0040090.
    1. Wizenberg T, Powell S, Shaw KA, Jones G. Effects of vitamin D supplementation on bone density in healthy children: systemie review and meta-analysis. BMJ. 2011;342:7254. doi: 10.1136/bmj.c7254.
    1. El-Hajj Fuleihan G, Nabulsi M, Tamim H, Maalouf J, Salamoun M, Khalife H, et al. Effect of vitamin D repalcement on musucoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006;91:405–412. doi: 10.1210/jc.2005-1436.
    1. Lenders CM, Feldman HA, Von Scheven E, Merewood A, Sweeney C, Wilson DM, et al. Relation of body FAT indexes to vitamin D status and defeciency among obese adolescents. Am J Clin Nutr. 2009;90:459–467. doi: 10.3945/ajcn.2008.27275.
    1. Soltani S, Hunter GR, Kazemi A, Shab-Bidar S. The effects of weight loss approaches on bone mineral density in adults: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2016;6. [Epub ahead of print]
    1. Rector RS, Loethen J, Ruebel M, Thomas TR, Hinton PS. Serum markers of bone turnover are increased by modest weight loss with or without weight-bearing exercise in overweight premenopausal women. Appl Physiol Nutr Metab. 2009;34:933–941. doi: 10.1139/H09-098.
    1. Shapses SA, Von Thun NL, Heymsfield SB, Ricci TA, Ospina M, Pierson RN, Jr, Stahl T. Bone turnover and density in obese premenopausal women during moderate weight loss and calcium supplementation. J Bone Miner Res. 2001;16:1329–1336. doi: 10.1359/jbmr.2001.16.7.1329.
    1. Yu EW, Bouxsein ML, Putman MS, Monis EL, Roy AE, Pratt JS, et al. Two-year changes in bone density after roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab. 2015;100(4):1452–1459. doi: 10.1210/jc.2014-4341.
    1. Kaulfers AM, Bean JA, Inge TH, Dolan LM, Kalkwarf HJ. Bone loss in adolescents after bariatric burgery. Pediatrics. 2011;127:956–961. doi: 10.1542/peds.2010-0785.
    1. Labouesse MA, Gertz ER, Piccolo BD, Souza EC, Schuster GU, Witbracht MG, et al. Associations among endocrine, inflammatory and bone markers, body composition and physical activity to weight loss induced bone loss. Bone. 2014;64:138–146. doi: 10.1016/j.bone.2014.03.047.
    1. Salehpour A, Hosseinpanah F, Shidfar F, Vafa M, Razaghi M, Dehghani S, et al. A 12-week double-blind randomized clinical trial of vitamin D3 supplementation on body fat mass in healthy overweight and obese women. Nutr J. 2012;11:78. doi: 10.1186/1475-2891-11-78.
    1. Mason C, Xiao L, Imayama I, Duggan C, Wang CY, Korde L, et al. Vitamin D3 supplementation during weight loss: a double-blind randomized controlled trial. Am J Clin Nutr. 2014. (pub ahead of print).
    1. Mason C, Tapsoba JD, Duggan C, Imayama I, Wang CY, Korde L, et al. Effects of vitamin D3 supplementation on lean mass, muscle strength, and bone mineral density DuringWeight loss: a double-blind randomized controlled trial. J Am Geriatr Soc. 2016;64(4):769–778. doi: 10.1111/jgs.14049.
    1. Kułaga Z, Różdżyńska A, Palczewska I, Grajda A, Gurzkowska B, Napieralska E, et al. Siatki centylowe wysokości, masy ciała i wskaźnika masy ciała dzieci i młodzieży w Polsce – wyniki badania OLAF. Standardy Medyczne. 2010;7:690–700.
    1. O’ Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al. European society of hyprtension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31:1731–1768. doi: 10.1097/HJH.0b013e328363e964.
    1. Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 1999;341:1351–1357. doi: 10.1056/NEJM199910283411804.
    1. Jankowski M, Niedzielska A, Brzezinski M, Drabik J. Cardiorespiratory fitness in children: a simple screening test for population studies. Pediatr Cardiol. 2015;36:27–32. doi: 10.1007/s00246-014-0960-0.
    1. Narodowy Program Zapobiegania Nadwadze i Otyłości oraz Przewlekłym Chorobom Niezakaźnym Poprzez Poprawę Żywienia i Aktywności Fizycznej na lata 2007-2011. Ministerstwo Zdrowia, Departament Polityki Zdrowotnej.
    1. Kułaga Z, Litwin M, Tkaczyk M, Palczewska I, Zajączkowska M, Zwolińska D, et al. Polish 2010 growth references for school-aged children and adolescents. Eur J Pediatr. 2011;170:99–609.
    1. Kułaga Z, Litwin M, Zajączkowska M, Wasilewska A, Morawiec-Knysak A, Różdżyńska A, et al. Porównanie wartości obwodów talii i bioder dzieci i młodzieży polskiej w wieku 7-18 lat z wartościami referencyjnymi dla oceny ryzyka sercowo-naczyniowego - wyniki wstępne projektu badawczego OLAF (PL0080) Standardy Medyczne Pediatria. 2008;5:473–485.

Source: PubMed

3
S'abonner