Transcranial alternating current stimulation increases risk-taking behavior in the balloon analog risk task

Tal Sela, Adi Kilim, Michal Lavidor, Tal Sela, Adi Kilim, Michal Lavidor

Abstract

The process of evaluating risks and benefits involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). It has been proposed that in conflict and reward situations, theta-band (4-8 Hz) oscillatory activity in the frontal cortex may reflect an electrophysiological mechanism for coordinating neural networks monitoring behavior, as well as facilitating task-specific adaptive changes. The goal of the present study was to investigate the hypothesis that theta-band oscillatory balance between right and left frontal and prefrontal regions, with a predominance role to the right hemisphere (RH), is crucial for regulatory control during decision-making under risk. In order to explore this hypothesis, we used transcranial alternating current stimulation, a novel technique that provides the opportunity to explore the functional role of neuronal oscillatory activities and to establish a causal link between specific oscillations and functional lateralization in risky decision-making situations. For this aim, healthy participants were randomly allocated to one of three stimulation groups (LH stimulation/RH stimulation/Sham stimulation), with active AC stimulation delivered in a frequency-dependent manner (at 6.5 Hz; 1 mA peak-to-peak). During the AC stimulation, participants performed the Balloon Analog Risk Task. This experiment revealed that participants receiving LH stimulation displayed riskier decision-making style compared to sham and RH stimulation groups. However, there was no difference in decision-making behaviors between sham and RH stimulation groups. The current study extends the notion that DLPFC activity is critical for adaptive decision-making in the context of risk-taking and emphasis the role of theta-band oscillatory activity during risky decision-making situations.

Keywords: BART; DLPFC; lateralization; risk-taking; theta-band oscillations.

Figures

Figure 1
Figure 1
Overview of the study design. Participants arrived at the lab, answered the BIS/BAS scales (Carver and White, 1994), and were randomly assigned into one of three stimulation conditions: left, right, or sham stimulation. After a short practice, sham or AC stimulation administered and lasted a total of 15 min, with 6.5 Hz, 1 mA peak-to-peak intensity in the active stimulation conditions. The stimulation started 5 min before the task began and was delivered during the entire course of the BART, which lasted <10 min. Before and after stimulation and the BART participants performed the line-bisection task.
Figure 2
Figure 2
Graphic display of the average number of adjusted pumps (the total pumps of the balloon that did not explode) for each stimulation group (A) and the average number of adjusted pumps for each group and time period (B). Error bars indicate SEM. *p < 0.05.
Figure 3
Figure 3
Graphic display of the different balloon explosions frequencies dependent measures. (A) Explosions.Tot = total number of balloon explosions; (B) One-time = total number of one-time balloon explosions; (C) Seq.Tot = total number of sequential balloon explosion; (D) Max.Seq = maximum number of balloon explosions in a sequence. Error bars indicate SEM. *p < 0.05. **p < 0.01.

References

    1. Aklin W. M., Lejuez C. W., Zvolensky M. J., Kahler C. W., Gwadz M. (2005). Evaluation of behavioral measures of risk taking propensity with inner city adolescents. Behav. Res. Ther. 43, 215–22810.1016/j.brat.2003.12.007
    1. Bechara A., Damasio A. R., Damasio H., Anderson S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 7–1510.1016/0010-0277(94)90018-3
    1. Bechara A., Tranel D., Damasio H., Damasio A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6, 215–22510.1093/cercor/6.2.215
    1. Beeli G., Koeneke S., Gasser K., Jancke L. (2008). Brain stimulation modulates driving behavior. Behav. Brain Funct. 4, 34.10.1186/1744-9081-4-34
    1. Bishara A. J., Pleskac T. J., Fridberg D. J., Yechiam E., Lucas J., Busemeyer J. R., Finn P. R., Stout J. C. (2009). Similar processes despite divergent behavior in two commonly used measures of risky decision making. J. Behav. Decis. Mak. 22, 435–45410.1002/bdm.641
    1. Bornovalova M. A., Cashman-Rolls A., O’Donnell J. M., Ettinger K., Richards J. B., Dewit H., Lejuez C. W. (2009). Risk taking differences on a behavioral task as a function of potential reward/loss magnitude and individual differences in impulsivity and sensation seeking. Pharmacol. Biochem. Behav. 93, 258–26210.1016/j.pbb.2008.10.023
    1. Carver C. S., White T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. J. Pers. Soc. Psychol. 67, 319–31910.1037/0022-3514.67.2.319
    1. Cavanagh J. F., Cohen M. X., Allen J. J. B. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. J. Neurosci. 29, 98–10510.1523/JNEUROSCI.4137-08.2009
    1. Cavanagh J. F., Frank M. J., Klein T. J., Allen J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. Neuroimage 49, 3198–320910.1016/j.neuroimage.2009.11.080
    1. Christie G. J., Tata M. S. (2009). Right frontal cortex generates reward-related theta-band oscillatory activity. Neuroimage 48, 415–42210.1016/j.neuroimage.2009.06.076
    1. Clark L., Manes F., Antoun N., Sahakian B. J., Robbins T. W. (2003). The contributions of lesion laterality and lesion volume to decision-making impairment following frontal lobe damage. Neuropsychologia 41, 1474–148310.1016/S0028-3932(02)00163-X
    1. Cohen M. X., Elger C. E., Ranganath C. (2007). Reward expectation modulates feedback-related negativity and EEG spectra. Neuroimage 35, 968–97810.1016/j.neuroimage.2006.11.056
    1. Cohen M. X., Ridderinkhof K. R., Haupt S., Elger C. E., Fell J. (2008). Medial frontal cortex and response conflict: evidence from human intracranial EEG and medial frontal cortex lesion. Brain Res. 1238, 127–14210.1016/j.brainres.2008.07.114
    1. Demaree H. A., Dedonno M. A., Burns K. J., Erik Everhart D. (2008). You bet: how personality differences affect risk-taking preferences. Pers. Individ. Dif. 44, 1484–149410.1016/j.paid.2008.01.005
    1. Ernst M., Paulus M. P. (2005). Neurobiology of decision making: a selective review from a neurocognitive and clinical perspective. Biol. Psychiatry 58, 597–60410.1016/j.biopsych.2005.06.004
    1. Fecteau S., Knoch D., Fregni F., Sultani N., Boggio P., Pascual-Leone A. (2007a). Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J. Neurosci. 27, 12500–1250510.1523/JNEUROSCI.3283-07.2007
    1. Fecteau S., Pascual-Leone A., Zald D. H., Liguori P., Theoret H., Boggio P. S., Fregni F. (2007b). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J. Neurosci. 27, 6212–621810.1523/JNEUROSCI.3283-07.2007
    1. Feurra M., Bianco G., Santarnecchi E., Del Testa M., Rossi A., Rossi S. (2011). Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J. Neurosci. 31, 12165–1217010.1523/JNEUROSCI.0978-11.2011
    1. Freeman N., Muraven M. (2010). Self-control depletion leads to increased risk taking. Soc. Psychol. Personal. Sci. 1, 175–181
    1. Gandiga P. C., Hummel F. C., Cohen L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117, 845–85010.1016/j.clinph.2005.12.003
    1. Gehring W. J., Willoughby A. R. (2004). “Are all medial frontal negativities created equal? Toward a richer empirical basis for theories of action monitoring,” in Errors, Conflicts and the Brain: Current Opinions on Performance Monitoring, eds Ullsperger M., Falkenstein M. (Leipzig: Max Planck Institute of Cognitive Neuroscience; ), 14–20
    1. Gianotti L. R. R., Knoch D., Faber P. L., Lehmann D., Pascual-Marqui R. D., Diezi C., Schoch C., Eisenegger C., Fehr E. (2009). Tonic activity level in the right prefrontal cortex predicts individuals’ risk taking. Psychol. Sci. 20, 33–3810.1111/j.1467-9280.2008.02260.x
    1. Goldstein A., Revivo K., Kreitler M., Metuki N. (2010). Unilateral muscle contractions enhance creative thinking. Psychon. Bull. Rev. 17, 895–89910.3758/PBR.17.6.895
    1. Gray J. A. (1987). “The neuropsychology of emotion and personality,” in Cognitive Neuropsychology, eds Stahl S. M., Iverson S. D., Goodman E. C. (New York: Oxford University Press; ), 171–190
    1. Gray J. A., McNaughton N. (2000). The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System. New York: Oxford University Press
    1. Hare T. A., Camerer C. F., Rangel A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–64810.1126/science.1168450
    1. Hunt M. K., Hopko D. R., Bare R., Lejuez C. W., Robinson E. V. (2005). Construct validity of the Balloon Analog Risk Task (BART). Assessment 12, 416–42810.1177/1073191105278740
    1. Jentsch J. D., Woods J. A., Groman S. M., Seu E. (2010). Behavioral characteristics and neural mechanisms mediating performance in a rodent version of the Balloon Analog Risk Task. Neuropsychopharmacology 35, 1797–1806
    1. Kanai R., Chaieb L., Antal A., Walsh V., Paulus W. (2008). Frequency-dependent electrical stimulation of the visual cortex. Curr. Biol. 18, 1839–184310.1016/j.cub.2008.10.027
    1. Kanai R., Paulus W., Walsh V. (2010). Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin. Neurophysiol. 121, 1551–155410.1016/S1388-2457(10)60794-8
    1. Kerns J. G., Cohen J. D., Macdonald A. W., Cho R. Y., Stenger V. A., Carter C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–102610.1126/science.1089910
    1. Kinsbourne M. (1970). The cerebral basis of lateral asymmetries in attention. Acta Psychol. (Amst.) 33, 193–20110.1016/0001-6918(70)90132-0
    1. Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–19510.1016/S0165-0173(98)00056-3
    1. Klimesch W., Doppelmayr M., Russegger H., Pachinger T. (1996). Theta band power in the human scalp EEG and the encoding of new information. Neuroreport 7, 1235–124010.1097/00001756-199605170-00002
    1. Knoch D., Gianotti L. R. R., Pascual-Leone A., Treyer V., Regard M., Hohmann M., Brugger P. (2006). Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J. Neurosci. 26, 6469–647210.1523/JNEUROSCI.0804-06.2006
    1. Krain A. L., Wilson A. M., Arbuckle R., Castellanos F. X., Milham M. P. (2006). Distinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-making. Neuroimage 32, 477–48410.1016/j.neuroimage.2006.02.047
    1. Lee D., Seo H. (2007). Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex. Ann. N. Y. Acad. Sci. 1104, 108–12210.1196/annals.1390.007
    1. Lejuez C. W., Aklin W. M., Bornovalova M. A., Moolchan E. T. (2005). Differences in risk-taking propensity across inner-city adolescent ever-and never-smokers. Nicotine Tob. Res. 7, 71–7910.1080/14622200412331328484
    1. Lejuez C. W., Aklin W. M., Jones H. A., Richards J. B., Strong D. R., Kahler C. W., Read J. P. (2003a). The Balloon Analogue Risk Task (BART) differentiates smokers and nonsmokers. Exp. Clin. Psychopharmacol. 11, 26–3310.1037/1064-1297.11.1.26
    1. Lejuez C. W., Aklin W. M., Zvolensky M. J., Pedulla C. M. (2003b). Evaluation of the Balloon Analogue Risk Task (BART) as a predictor of adolescent real-world risk-taking behaviours. J. Adolesc. 26, 475–47910.1016/S0140-1971(03)00036-8
    1. Lejuez C. W., Read J. P., Kahler C. W., Richards J. B., Ramsey S. E., Stuart G. L., Strong D. R., Brown R. A. (2002). Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task (BART). J. Exp. Psychol. Appl. 8, 75–8410.1037/1076-898X.8.2.75
    1. Lejuez C. W., Simmons B. L., Aklin W. M., Daughters S. B., Dvir S. (2004). Risk-taking propensity and risky sexual behavior of individuals in residential substance use treatment. Addict. Behav. 29, 1643–164710.1016/j.addbeh.2004.02.035
    1. Luu P., Tucker D. M. (2001). Regulating action: alternating activation of midline frontal and motor cortical networks. Clin. Neurophysiol. 112, 1295–130610.1016/S1388-2457(01)00559-4
    1. Luu P., Tucker D. M., Derryberry D., Reed M., Poulsen C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychol. Sci. 14, 47–5310.1111/1467-9280.01417
    1. Luu P., Tucker D. M., Makeig S. (2004). Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin. Neurophysiol. 115, 1821–183510.1016/j.clinph.2004.03.031
    1. Marco-Pallares J., Cucurell D., Cunillera T., García R., Andrés-Pueyo A., Münte T. F., Rodríguez-Fornells A. (2008). Human oscillatory activity associated to reward processing in a gambling task. Neuropsychologia 46, 241–24810.1016/j.neuropsychologia.2007.07.016
    1. Marshall L., Helgadóttir H., Mölle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–61310.1038/nature05278
    1. McClure S. M., Laibson D. I., Loewenstein G., Cohen J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–50710.1126/science.1100907
    1. Miller E. K., Cohen J. D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–20210.1146/annurev.neuro.24.1.167
    1. Milner A. D., Brechmann M., Pagliarini L. (1992). To halve and to halve not: an analysis of line bisection judgements in normal subjects. Neuropsychologia 30, 515–52610.1016/0028-3932(92)90055-Q
    1. Mohr P. N. C., Biele G., Heekeren H. R. (2010). Neural processing of risk. J. Neurosci. 30, 6613–661910.1523/JNEUROSCI.0003-10.2010
    1. Nash K., Mcgregor I., Inzlicht M. (2010). Line bisection as a neural marker of approach motivation. Psychophysiology 47, 979–983
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–11310.1016/0028-3932(71)90067-4
    1. Paulus M. P., Hozack N., Zauscher B., Mcdowell J. E., Frank L., Brown G. G., Braff D. L. (2001). Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty. Neuroimage 13, 91–10010.1006/nimg.2000.0667
    1. Paulus W. (2011). On the difficulties to separate retinal from cortical origin of phosphenes when using transcranial alternating current stimulation. Clin. Neurophysiol. 121, 987–99110.1016/j.clinph.2010.01.029
    1. Pickering A. D., Gray J. A. (1999). “The neuroscience of personality,” in Handbook of Personality: Theory and Research, 2nd Edn, eds Pervin L. A., John O. P. (New York: Guilford Press; ), 277–299
    1. Pogosyan A., Gaynor L. D., Eusebio A., Brown P. (2009). Boosting cortical activity at beta-band frequencies slows movement in humans. Curr. Biol. 19, 1637–164110.1016/j.cub.2009.07.074
    1. Rahman S., Sahakian B. J., Cardinal R. N., Rogers R. D., Robbins T. W. (2001). Decision making and neuropsychiatry. Trends Cogn. Sci. 5, 271–27710.1016/S1364-6613(00)01650-8
    1. Rao H., Korczykowski M., Pluta J., Hoang A., Detre J. A. (2008). Neural correlates of voluntary and involuntary risk taking in the human brain: an fMRI study of the Balloon Analog Risk Task (BART). Neuroimage 42, 902–91010.1016/j.neuroimage.2008.05.046
    1. Ridderinkhof K. R., Ullsperger M., Crone E. A., Nieuwenhuis S. (2004). The role of the medial frontal cortex in cognitive control. Science 306, 443–44710.1126/science.1100301
    1. Rogers R. D., Owen A. M., Middleton H. C., Williams E. J., Pickard J. D., Sahakian B. J., Robbins T. W. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J. Neurosci. 19, 9029–9038
    1. Rosanova M., Casali A., Bellina V., Resta F., Mariotti M., Massimini M. (2009). Natural frequencies of human corticothalamic circuits. J. Neurosci. 29, 7679–768510.1523/JNEUROSCI.0445-09.2009
    1. Sanfey A. G., Hastie R., Colvin M. K., Grafman J. (2003a). Phineas gauged: decision-making and the human prefrontal cortex. Neuropsychologia 41, 1218–122910.1016/S0028-3932(03)00039-3
    1. Sanfey A. G., Rilling J. K., Aronson J. A., Nystrom L. E., Cohen J. D. (2003b). The neural basis of economic decision-making in the ultimatum game. Science 300, 1755–175810.1126/science.1082976
    1. Schonberg T., Fox C. R., Poldrack R. A. (2011). Mind the gap: bridging economic and naturalistic risk-taking with cognitive neuroscience. Trends Cogn. Sci. 15, 11–1910.1016/j.tics.2010.10.002
    1. Schutter D. J. L. G., Hortensius R. (2011). Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimul. 4, 97–10310.1016/j.brs.2010.07.002
    1. Slovic P. (1966). Risk-taking in children: age and sex differences. Child Dev. 169–17610.2307/1126437
    1. Thut G., Miniussi C. (2009). New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn. Sci. 13, 182–18910.1016/j.tics.2009.01.004
    1. Tranel D., Bechara A., Denburg N. L. (2002). Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex 38, 589–61210.1016/S0010-9452(08)70024-8
    1. Tranel D., Damasio H., Denburg N. L., Bechara A. (2005). Does gender play a role in functional asymmetry of ventromedial prefrontal cortex? Brain 128, 2872–288110.1093/brain/awh643
    1. Trepel C., Fox C. R., Poldrack R. A. (2005). Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk. Brain Res. Cogn. Brain Res. 23, 34–5010.1016/j.cogbrainres.2005.01.016
    1. Vallar G., Perani D. (1986). The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia 24, 609–62210.1016/0028-3932(86)90001-1
    1. van de Vijver I., Ridderinkhof K. R., Cohen M. X. (2011). Frontal oscillatory dynamics predict feedback learning and action adjustment. J. Cogn. Neurosci. 23, 4106–412110.1162/jocn_a_00110
    1. van Ravenzwaaij D., Dutilh G., Wagenmakers E. J. (2011). Cognitive model decomposition of the BART: assessment and application. J. Math. Psychol. 55, 94–10510.1016/j.jmp.2010.08.010
    1. van’t Wout M., Kahn R. S., Sanfey A. G., Aleman A. (2005). Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making. Neuroreport 16, 1849–185210.1097/01.wnr.0000183907.08149.14
    1. Wallsten T. S., Pleskac T. J., Lejuez C. W. (2005). Modeling behavior in a clinically diagnostic sequential risk-taking task. Psychol. Rev. 112, 862.10.1037/0033-295X.112.4.862
    1. Zaehle T., Rach S., Herrmann C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE 5, e13766.10.1371/journal.pone.0013766
    1. Zaghi S., Acar M., Hultgren B., Boggio P. S., Fregni F. (2010). Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist 16, 285–30710.1177/1073858409336227

Source: PubMed

3
S'abonner