Noncaloric Sweeteners in Children: A Controversial Theme

Samuel Durán Agüero, Lissé Angarita Dávila, Ma Cristina Escobar Contreras, Diana Rojas Gómez, Jorge de Assis Costa, Samuel Durán Agüero, Lissé Angarita Dávila, Ma Cristina Escobar Contreras, Diana Rojas Gómez, Jorge de Assis Costa

Abstract

Noncaloric sweeteners (NCS) are food additives used to provide sweetness without adding calories. Their consumption has become more widespread around the world in all age groups, including children. The aim of this study is to show the state of the art about the intake of noncaloric sweeteners in children, as well as their benefits and consumption risk. Scientific searchers were used (PUBMED, Scopus, and Scielo) to analyze articles that included keywords (noncaloric sweeteners/saccharin/cyclamate/acesulfame potassium/aspartame/sucralose/stevia/children) in English, Spanish, and Portuguese. Authors conclude that it is imperative that health professionals judiciously and individually evaluate the overall benefits and risks of NCS use in consumers before recommending their use. Different subgroups of the population incorporate products containing NCS in their diet with different objectives, which should be considered when recommending a diet plan for the consumer. In childhood, in earlier age groups, this type of additives should be used as a dietary alternative when other forms of prevention in obesity are not sufficient.

References

    1. Kim M., Lee G., Lim H. S., et al. Safety assessment of 16 sweeteners for the Korean population using dietary intake monitoring and poundage method. Food Additives & Contaminants: Part A. 2017;34(9):1500–1509. doi: 10.1080/19440049.2017.1349344.
    1. Roberts A. The safety and regulatory process for low calorie sweeteners in the United States. Physiology and Behavior. 2016;164:439–444. doi: 10.1016/j.physbeh.2016.02.039.
    1. Norma general del CODEX para los aditivos alimentarios Revisión 2011 (GSFA, CODEXSTAN 192-1995) .
    1. Statement of EFSA on the scientific evaluation of two studies related to the safety of artificial sweeteners. EFSA Journal. 2011;9(2):p. 2089. doi: 10.2903/j.efsa.2011.2089.
    1. Food Additives & Ingredients. .
    1. Martyn D. M., Nugent A. P., McNulty B. A., et al. Dietary intake of four artificial sweeteners by Irish pre-school children. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. 2016;33(4):592–602. doi: 10.1080/19440049.2016.1152880.
    1. Huvaere K., Vandevijvere S., Hasni M., Vinkx C., van Loco J. Dietary intake of artificial sweeteners by the belgian population. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. 2012;29(1):54–65.
    1. O’Sullivan A. J., Pigat S., O’Mahony C., Gibney M. J., McKevitt A. I. Longitudinal modelling of the exposure of young UK patients with PKU to acesulfame K and sucralose. Food Additives & Contaminants: Part A. 2017;34(11):1863–1874. doi: 10.1080/19440049.2017.1363417.
    1. Huth P. J., Fulgoni V. L., Keast D. R., Park K., Auestad N. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: Data from the national health and nutrition examination survey (2003-2006) Nutrition Journal . 2013;12(1, article no. 116) doi: 10.1186/1475-2891-12-116.
    1. Popkin B. M., Hawkes C. Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. The Lancet Diabetes & Endocrinology. 2016;4(2):174–186. doi: 10.1016/S2213-8587(15)00419-2.
    1. Agüero S. D., Leiva A. V., Illanes G. M., et al. Association between stevia sweetener consumption and nutritional status in university students. Nutricion Hospitalaria. 2015;32(1):362–366. doi: 10.3305/nh.2015.32.1.8961.
    1. Aguero D. S., Batten E. B., Noel M. d. R., et al. Asociación entre edulcorantes no nutritivos y riesgo de obesidad en estudiantes universitarios de Latinoamérica. Revista médica de Chile. 2015;143(3):367–373. doi: 10.4067/S0034-98872015000300012.
    1. Aguero S. D., Batten E. B., Mdel P. R. N., Arrivillaga K. C., de Ariza J. S., Cornwall J. R., et al. Association between non-nutritive sweeteners and obesity risk among university students in Latin America. Rev Med Chile. 2015;143(3):367–73.
    1. Aguero S. D., Onate G., Rivera H. P. Consumption of non-nutritive sweeteners and nutritional status in 10-16 year old students. Archivos Argentinos de Pediatria. 2014;112(3) doi: 10.5546/aap.2014.eng.207.
    1. Cagnasso L. L. C., Valencia M. Edulcorantes no nutritivos en bebidas sin alcohol: estimación de la ingesta en niños y adolescentes. Arch Argent Pediatr. Archivos Argentinos De Pediatria. 2007;105:517–521.
    1. Zanini R. d., Araújo C. L., Martínez-Mesa J. Utilização de adoçantes dietéticos entre adultos em Pelotas, Rio Grande do Sul, Brasil: um estudo de base populacional. Cadernos de Saúde Pública. 2011;27(5):924–934. doi: 10.1590/S0102-311X2011000500010.
    1. Baile J. I. Obese but malnourished: a serious problem in Latin America. Revista Médica de Chile. 2015;143(10):1361–1362. doi: 10.4067/S0034-98872015001000018.
    1. Kirkland D., Gatehouse D. "Aspartame: a review of genotoxicity data". Food and Chemical Toxicology. 2015;84:161–168. doi: 10.1016/j.fct.2015.08.021.
    1. Programa del niño menor de 2 años. Chile. .
    1. Ministerio de Salud de la Nación. Sobrepeso y obesidad en niños y adolescentes. Orientaciones para su prevención, diagnóstico y tratamiento en Atención Primaria de la Salud. 1st. Vol. 40. Buenos Aires: Ministerio de Salud de la Nación; 2013.
    1. Journal of the Pakistan Medical Association. Artificial sweeteners: safe or unsafe? Qurrat-ul-Ain, Khan SA. 2015.
    1. Brown R. J., de Banate M. A., Rother K. I. Artificial sweeteners: a systematic review of metabolic effects in youth. International Journal of Pediatric Obesity. 2010;5(4):305–312. doi: 10.3109/17477160903497027.
    1. Fitch C., Keim K. S. Position of the Academy of Nutrition and Dietetics: use of nutritive and nonnutritive sweeteners. Journal of the Academy of Nutrition and Dietetics. 2012;112(5):739–758. doi: 10.1016/j.jand.2012.03.009.
    1. Sedova L., Šeda O., Kazdová L., et al. Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. American Journal of Physiology-Renal Physiology. 2007;292(5):E1318–E1324. doi: 10.1152/ajpendo.00526.2006.
    1. Hirsch A. R. Migraine triggered by sucralose - A case report [1] Headache: The Journal of Head and Face Pain. 2007;47(3):p. 447. doi: 10.1111/j.1526-4610.2007.00735.x.
    1. Grotz V. L. Sucralose and Migraine. Headache: The Journal of Head and Face Pain. 2008;48(1):164–165. doi: 10.1111/j.1526-4610.2007.00983.x.
    1. Abegaz E. G., Bursey R. G. Formaldehyde, aspartame, migraines: A possible connection. Dermatitis. 2009;20(3):176–177. doi: 10.2310/6620.2009.08082.
    1. Taheri S. Effect of exclusion of frequently consumed dietary triggers in a cohort of children with chronic primary headache. Nutrition and Health. 2017;23(1):47–50. doi: 10.1177/0260106016688699.
    1. Imamura F., O'Connor L., Ye Z., et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. British Journal of Sports Medicine. 2016;50(8):496–504. doi: 10.1136/bjsports-2016-h3576rep.
    1. Striegel-Moore R. H., Thompson D., Affenito S. G., et al. Correlates of beverage intake in adolescent girls: The National Heart, Lung, and Blood Institute Growth and Health Study. Journal of Pediatrics. 2006;148(2):183–187. doi: 10.1016/j.jpeds.2005.11.025.
    1. Watowicz R. P., Anderson S. E., Kaye G. L., Taylor C. A. Energy contribution of beverages in us children by age, weight, and consumer status. Childhood Obesity. 2015;11(4):475–483. doi: 10.1089/chi.2015.0022.
    1. Kral T. V. E., Stunkard A. J., Berkowitz R. I., Stallings V. A., Moore R. H., Faith M. S. Beverage consumption patterns of children born at different risk of obesity. Obesity. 2008;16(8):1802–1808. doi: 10.1038/oby.2008.287.
    1. Durán A S., Quijada M M., Silva V L., Almonacid M N., Berlanga Z M., Rodríguez N M. Niveles de ingesta diaria de edulcorantes no nutritivos en escolares de la región de valparaíso. Revista chilena de nutrición. 2011;38(4):444–449. doi: 10.4067/S0717-75182011000400007.
    1. European Food Safety Authority. Refined exposure assessment for Ponceau 4R (E 124) EFSA Journal. 2015;13(4) doi: 10.2903/j.efsa.2015.
    1. Lefterova M. I., Lazar M. A. New developments in adipogenesis. Trends in Endocrinology and Metabolism. 2009;20(3):107–114. doi: 10.1016/j.tem.2008.11.005.
    1. Simon B. R., Parlee S. D., Learman B. S., et al. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors. The Journal of Biological Chemistry. 2013;288(45):32475–32489. doi: 10.1074/jbc.M113.514034.
    1. Pandurangan M., Park J., Kim E. Aspartame downregulates 3T3-L1 differentiation. In Vitro Cellular and Developmental Biology - Animal. 2014;50(9):851–857. doi: 10.1007/s11626-014-9789-3.
    1. Lim E., Lim J. Y., Shin J.-H., et al. D-Xylose suppresses adipogenesis and regulates lipid metabolism genes in high-fat diet-induced obese mice. Nutrition Research. 2015;35(7):626–636. doi: 10.1016/j.nutres.2015.05.012.
    1. Frank G. K. W., Oberndorfer T. A., Simmons A. N., et al. Sucrose activates human taste pathways differently from artificial sweetener. NeuroImage. 2008;39(4):1559–1569. doi: 10.1016/j.neuroimage.2007.10.061.
    1. Jimenez-Cruz A., Gomez-Miranda L. M., Bacardi-Gascon M. Interacting generalized dark energy and reconstruction of scalar field models. Modern Physics Letters A. 2013;28(38):15. doi: 10.1142/S0217732313501800.1350180
    1. Cantoral A., Téllez-Rojo M. M., Ettinger A. S., Hu H., Hernández-Ávila M., Peterson K. Early introduction and cumulative consumption of sugar-sweetened beverages during the pre-school period and risk of obesity at 8-14 years of age. Pediatric Obesity. 2016;11(1):68–74. doi: 10.1111/ijpo.12023.
    1. Scharf R. J., DeBoer M. D. Sugar-Sweetened Beverages and Children's Health. Annual Review of Public Health. 2016;37:273–293. doi: 10.1146/annurev-publhealth-032315-021528.
    1. Torre S. B. D., Keller A., Depeyre J. L., Kruseman M. Sugar-Sweetened Beverages and Obesity Risk in Children and Adolescents: A Systematic Analysis on How Methodological Quality May Influence Conclusions. Journal of the Academy of Nutrition and Dietetics. 2016;116(4):638–659. doi: 10.1016/j.jand.2015.05.020.
    1. Morenga L. T., Mallard S., Mann J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. 2013;345(7891) doi: 10.1136/bmj.e7492.e7492
    1. Vos M. B., Kaar J. L., Welsh J. A., et al. Added sugars and cardiovascular disease risk in children: A scientific statement from the American Heart Association. Circulation. 2017;135(19):e1017–e1034. doi: 10.1161/CIR.0000000000000439.
    1. de Ruyter J. C., Olthof M. R., Seidell J. C., Katan M. B. A trial of sugar-free or sugar-sweetened beverages and body weight in children. The New England Journal of Medicine. 2012;367(15):1397–1406. doi: 10.1056/NEJMoa1203034.
    1. Williams C. L., Strobino B. A., Brotanek J. Weight control among obese adolescents: A pilot study. International Journal of Food Sciences and Nutrition. 2007;58(3):217–230. doi: 10.1080/09637480701198083.
    1. Miller P. E., Perez V. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. American Journal of Clinical Nutrition. 2014;100(3):765–777. doi: 10.3945/ajcn.113.082826.
    1. Katan M. B., De Ruyter J. C., Kuijper L. D. J., Chow C. C., Hall K. D., Olthof M. R. Impact of masked replacement of sugar-sweetened with sugar-free beverages on body weight increases with initial bmi: Secondary analysis of data from an 18 month double-blind trial in children. PLoS ONE. 2016;11(7) doi: 10.1371/journal.pone.0159771.e0159771
    1. Foreyt J., Kleinman R., Brown R. J., Lindstrom R. The Use of Low-Calorie Sweeteners by Children: Implications for Weight Management. Journal of Nutrition. 2012;142(6) doi: 10.3945/jn.111.149609.
    1. Ebbeling C. B., Feldman H. A., Chomitz V. R. A randomized trial of sugar-sweetened beverages and adolescent body weight. The New England Journal of Medicine. 2012;367(15):1407–1416. doi: 10.1056/NEJMoa1203388.
    1. Forshee R. A., Storey M. L. Total beverage consumption and beverage choices among children and adolescents. International Journal of Food Sciences and Nutrition. 2003;54(4):297–307. doi: 10.1080/09637480120092143.
    1. O'Connor T. M., Yang S.-J., Nicklas T. A. Beverage intake among preschool children and its effect on weight status. Pediatrics. 2006;118(4):e1010–e1018. doi: 10.1542/peds.2005-2348.
    1. Zhu Y., Olsen S. F., Mendola P., et al. Maternal consumption of artificially sweetened beverages during pregnancy, and offspring growth through 7 years of age: a prospective cohort study. International Journal of Epidemiology. 2017;46(5):1499–1508. doi: 10.1093/ije/dyx095.
    1. Ali F. Consumption of artificial sweeteners in pregnancy increased overweight risk in infants. Archives of Disease in Childhood. Education and Practice Edition. 2017:p. 2017. doi: 10.1136/archdischild-2017-312618.312618
    1. Reid A. E., Chauhan B. F., Rabbani R., et al. Early exposure to nonnutritive sweeteners and long-term metabolic health: A systematic review. Pediatrics. 2016;137(3) doi: 10.1542/peds.2015-3603.e20153603
    1. Mueller N. T., Jacobs D. R., MacLehose R. F., et al. Consumption of caffeinated and artificially sweetened soft drinks is associated with risk of early menarche. American Journal of Clinical Nutrition. 2015;102(3):648–654. doi: 10.3945/ajcn.114.100958.
    1. Kleinman R. E. Aspartic acid, phenylalanine, and early menarche. American Journal of Clinical Nutrition. 2015;102(6):1617–1618. doi: 10.3945/ajcn.115.120857.
    1. Carwile J., Willett W., Spiegelman D., et al. Sugar-sweetened beverage consumption and age at menarche in a prospective study of US girls. Human Reproduction. 2015;30(3):675–683. doi: 10.1093/humrep/deu349.
    1. Swithers S. E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends in Endocrinology & Metabolism. 2013;24(9):431–441. doi: 10.1016/j.tem.2013.05.005.
    1. Terry-McElrath Y. M., Turner L., Sandoval A., Johnston L. D., Chaloupka F. J. Commercialism in US elementary and secondary school nutrition environments trends from 2007 to 2012. JAMA Pediatrics. 2014;168(3):234–242. doi: 10.1001/jamapediatrics.2013.4521.
    1. Smeets P. A. M., Weijzen P., de Graaf C., Viergever M. A. Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. NeuroImage. 2011;54(2):1367–1374. doi: 10.1016/j.neuroimage.2010.08.054.
    1. Romo-Romo A., Aguilar-Salinas C. A., Brito-Cordova G. X., Diaz R. A. G., Valentin D. V., Almeda-Valdes P. Effects of the non-nutritive sweeteners on glucose metabolism and appetite regulating hormones: Systematic review of observational prospective studies and clinical Trials. PLoS ONE. 2016;11(8) doi: 10.1371/journal.pone.0161264.0161264
    1. Wang Q.-P., Lin Y. Q., Zhang L., et al. Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response. Cell Metabolism. 2016;24(1):75–90. doi: 10.1016/j.cmet.2016.06.010.
    1. Suez J., Korem T., Zeevi D. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–186. doi: 10.1038/nature13793.
    1. Daly K., Darby A. C., Shirazi-Beechey S. P. Low calorie sweeteners and gut microbiota. Physiology and Behavior. 2016;164:494–500. doi: 10.1016/j.physbeh.2016.03.014.
    1. Abou-Donia M. B., El-Masry E. M., Abdel-Rahman A. A., McLendon R. E., Schiffman S. S. Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. Journal of Toxicology and Environmental Health A: Current Issues. 2008;71(21):1415–1429. doi: 10.1080/15287390802328630.
    1. Norman K. Zeitschrift Fur Gastroenterologie. Vol. 52. 1493; 2014. Of mice and men--how saccharin induces glucose intolerance by altering the gut microbiota; p. p. 1494.
    1. Bian X., Chi L., Gao B., et al. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE. 2017;12(6):p. e0178426. doi: 10.1371/journal.pone.0178426.
    1. Gupta P., Gupta N., Pawar A. P., Birajdar S. S., Natt A. S., Singh H. P. Role of Sugar and Sugar Substitutes in Dental Caries: A Review. ISRN Dentistry. 2013;2013:1–5. doi: 10.1155/2013/519421.
    1. Anderson C. A., Curzon M. E. J., Van Loveren C., Tatsi C., Duggal M. S. Sucrose and dental caries: A review of the evidence. Obesity Reviews. 2009;10(1):41–54. doi: 10.1111/j.1467-789X.2008.00564.x.
    1. Gil-Campos M., San José González M., Díaz Martín J. Use of sugars and sweeteners in children's diets. Recommendations of the Nutrition Committee of the Spanish Association of Paediatrics. Anales de Pediatría (English Edition) 2015;83(5):353.e1–353.e7. doi: 10.1016/j.anpede.2015.10.002.
    1. Angarita Davila L., López Miranda J., Aparicio Camargo D. Índice glicémico, carga glicémica e insulina posprandial a dos fórmulas isoglucídicas con distintos edulcorantes y fibra en adultos sanos y diabéticos tipo 2. Nutrición Hospitalaria. 2017;34(3):532–539. doi: 10.20960/nh.654.
    1. Ojo O., Brooke J. Evaluation of the role of enteral nutrition in managing patients with diabetes: a systematic review. Nutrients. 2014;6(11):5142–5152. doi: 10.3390/nu6115142.
    1. Sanz-Paris A., Boj-Carceller D., Lardies-Sanchez B., Perez-Fernandez L., Cruz-Jentoft A. J. Health-care costs, glycemic control and nutritional status in malnourished older diabetics treated with a hypercaloric diabetes-specific enteral nutritional formula. Nutrients. 2016;8(3, article no. 153) doi: 10.3390/nu8030153.

Source: PubMed

3
S'abonner