Alterations of White Matter Integrity and Hippocampal Functional Connectivity in Type 2 Diabetes Without Mild Cognitive Impairment

Qian Sun, Guan-Qun Chen, Xi-Bin Wang, Ying Yu, Yu-Chuan Hu, Lin-Feng Yan, Xin Zhang, Yang Yang, Jin Zhang, Bin Liu, Cong-Cong Wang, Yi Ma, Wen Wang, Ying Han, Guang-Bin Cui, Qian Sun, Guan-Qun Chen, Xi-Bin Wang, Ying Yu, Yu-Chuan Hu, Lin-Feng Yan, Xin Zhang, Yang Yang, Jin Zhang, Bin Liu, Cong-Cong Wang, Yi Ma, Wen Wang, Ying Han, Guang-Bin Cui

Abstract

Aims: To investigate the white matter (WM) integrity and hippocampal functional connectivity (FC) in type 2 diabetes mellitus (T2DM) patients without mild cognitive impairment (MCI) by using diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI), respectively. Methods: Twelve T2DM patients without MCI and 24 age, sex and education matched healthy controls (HC) were recruited. DTI and rs-fMRI data were subsequently acquired on a 3.0T MR scanner. Tract-based spatial statistics (TBSS) combining region of interests (ROIs) analysis was used to investigate the alterations of DTI metrics (fractional anisotropy (FA), mean diffusivity (MD), λ1 and λ23) and FC measurement was performed to calculate hippocampal FC with other brain regions. Cognitive function was evaluated by using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Brain volumes were also evaluated among these participants. Results: There were no difference of MMSE and MoCA scores between two groups. Neither whole brain nor regional brain volume decrease was revealed in T2DM patients without MCI. DTI analysis revealed extensive WM disruptions, especially in the body of corpus callosum (CC). Significant decreases of hippocampal FC with certain brain structures were revealed, especially with the bilateral frontal cortex. Furthermore, the decreased FA in left posterior thalamic radiation (PTR) and increased MD in the splenium of CC were closely related with the decreased hippocampal FC to caudate nucleus and frontal cortex. Conclusions: T2DM patients without MCI showed extensive WM disruptions and abnormal hippocampal FC. Moreover, the WM disruptions and abnormal hippocampal FC were closely associated. Highlights -T2DM patients without MCI demonstrated no obvious brain volume decrease.-Extensive white matter disruptions, especially within the body of corpus callosum, were revealed with DTI analysis among the T2DM patients.-Despite no MCI in T2DM patients, decreased functional connectivity between hippocampal region and some critical brain regions were detected.-The alterations in hippocampal functional connectivity were closely associated with those of the white matter structures in T2DM patients. This trial was registered to ClinicalTrials.gov (NCT02420470, https://www.clinicaltrials.gov/).

Keywords: functional connectivity (FC); hippocampal; resting-state functional magnetic resonance imaging (rs-fMRI); tract-based spatial statistics (TBSS); type 2 diabetes mellitus (T2DM).

Figures

Figure 1
Figure 1
Group difference based on voxel-based morphometry (VBM) analysis. (A,B) Difference of the mean gray matter volume (GMV), white matter volume (WMV), total brain volume (TBV) and proportion of cerebrospinal fluid (CSF) in type 2 diabetes mellitus (T2DM) and healthy control (HC) subjects. (C) Difference of regional atrophy between T2DM and HC groups. Neither whole brain (A,B) nor regional brain (C) volume reduction was observed in T2DM patients. All P > 0.05.
Figure 2
Figure 2
Differences in tract-based spatial statistics (TBSS) analysis results of fractional anisotropy (FA), mean diffusivity (MD), λ1, and λ23 images between T2DM and HC groups (axial images). Green regions represent the mean FA skeleton of all subjects. Red regions represent tracts with decreased FA, Deep-blue regions represent tracts with increased MD, Light-blue regions represent tracts with increased axial diffusivity (λ1), and Yellow regions represent tracts with increased radial diffusivity (λ23) in T2DM patients compared with HC subjects (P < 0.05, family wise error (FWE) corrected). There were significant differences in extensive white matter (WM) tracts in T2DM patients.
Figure 3
Figure 3
Mean diffusion metrics and group differences of region of interests (ROIs) analysis between T2DM and HC groups. (A) Regions with decreased FA in T2DM groups; (B) regions with increased MD in T2DM groups; (C) regions with increased λ1 in T2DM groups; (D) regions with increased λ23 in T2DM patients. All the ROIs showed in the figure were significantly different (all P < 0.05). GCC, genu of corpus callosum; BCC, body of corpus callosum; SCC, splenium of corpus callosum; CST, corticospinal tract. SCP, superior cerebellar peduncle; PTR, posterior thalamic radiation. ACR, anterior corona radiata. PCR, posterior corona radiata. SCR, superior corona radiata. R, right, L, left.
Figure 4
Figure 4
Significant difference in the functional connectivity (FC) of hippocampal region between T2DM and HC groups. The color scale represents the strength of hippocampal FC (decreasing strength from green to red) in axial images. The threshold was set as P < 0.05, AlphaSim corrected.
Figure 5
Figure 5
The relationships between WM diffusion metrics and hippocampal FC measures in T2DM. The mean FA values in PTR_L was positively associated with the average coefficient of FC between the left hippocampal region and (A) left frontal cortex; (B) right frontal cortex; (C) left caudate nucleus; The mean MD values in SCC was negatively associated with the average coefficient of FC between the right hippocampal region and (D) right frontal cortex; (E) right cingulate cortex; (F) left caudate nucleus. R, right; L, left. r value means Pearson’s correlation coefficient. P value < 0.05 was considered to be statistically significant.

References

    1. Ashburner J. (2009). Computational anatomy with the SPM software. Magn. Reson. Imaging 27, 1163–1174. 10.1016/j.mri.2009.01.006
    1. Benedict C., Brooks S. J., Kullberg J., Burgos J., Kempton M. J., Nordenskjold R., et al. . (2012). Impaired insulin sensitivity as indexed by the HOMA score is associated with deficits in verbal fluency and temporal lobe gray matter volume in the elderly. Diabetes Care 35, 488–494. 10.2337/dc11-2075
    1. Caille S., Sauerwein H. C., Schiavetto A., Villemure J. G., Lassonde M. (2005). Sensory and motor interhemispheric integration after section of different portions of the anterior corpus callosum in nonepileptic patients. Neurosurgery 57, 50–59; discussion 50–59. 10.1227/01.neu.0000163089.31657.08
    1. Chao-Gan Y., Yu-Feng Z. (2010). DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13. 10.3389/fnsys.2010.00013
    1. Chen Y. C., Jiao Y., Cui Y., Shang S. A., Ding J., Feng Y., et al. . (2014). Aberrant brain functional connectivity related to insulin resistance in type 2 diabetes: a resting-state fMRI study. Diabetes Care 37, 1689–1696. 10.2337/dc13-2127
    1. Chen Y., Liu Z., Zhang J., Tian G., Li L., Zhang S., et al. . (2015). Selectively disrupted functional connectivity networks in type 2 diabetes mellitus. Front. Aging Neurosci. 7:233. 10.3389/fnagi.2015.00233
    1. Comijs H. C., Kriegsman D. M., Dik M. G., Deeg D. J., Jonker C., Stalman W. A. (2009). Somatic chronic diseases and 6-year change in cognitive functioning among older persons. Arch. Gerontol. Geriatr. 48, 191–196. 10.1016/j.archger.2008.01.005
    1. Crane P. K., Walker R., Larson E. B. (2013). Glucose levels and risk of dementia. N. Engl. J. Med. 369, 1863–1864. 10.1056/NEJMc1311765
    1. Cui Y., Jiao Y., Chen H. J., Ding J., Luo B., Peng C. Y., et al. . (2015). Aberrant functional connectivity of default-mode network in type 2 diabetes patients. Eur. Radiol. 25, 3238–3246. 10.1007/s00330-015-3746-8
    1. Dou J. T., Chen M., Dufour F., Alkon D. L., Zhao W. Q. (2005). Insulin receptor signaling in long-term memory consolidation following spatial learning. Learn. Mem. 12, 646–655. 10.1101/lm.88005
    1. García-Casares N., García-Arnés J. A., Rioja J., Ariza M. J., Gutiérrez A., Alfaro F., et al. . (2016). Alzheimer’s like brain changes correlate with low adiponectin plasma levels in type 2 diabetic patients. J. Diabetes Complicat. 30, 281–286. 10.1016/j.jdiacomp.2015.12.001
    1. Geijselaers S. L., Sep S. J., Stehouwer C. D., Biessels G. J. (2015). Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. Lancet Diabetes Endocrinol. 3, 75–89. 10.1016/s2213-8587(14)70148-2
    1. Gold S. M., Dziobek I., Sweat V., Tirsi A., Rogers K., Bruehl H., et al. . (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 50, 711–719. 10.1007/s00125-007-0602-7
    1. Hayashi K., Kurioka S., Yamaguchi T., Morita M., Kanazawa I., Takase H., et al. . (2011). Association of cognitive dysfunction with hippocampal atrophy in elderly Japanese people with type 2 diabetes. Diabetes Res. Clin. Pract. 94, 180–185. 10.1016/j.diabres.2011.07.002
    1. Hoogenboom W. S., Marder T. J., Flores V. L., Huisman S., Eaton H. P., Schneiderman J. S., et al. . (2014). Cerebral white matter integrity and resting-state functional connectivity in middle-aged patients with type 2 diabetes. Diabetes 63, 728–738. 10.2337/db13-1219
    1. Huang X., Du X., Song H., Zhang Q., Jia J., Xiao T., et al. (2015). Cognitive impairments associated with corpus callosum infarction: a ten cases study. Int. J. Clin. Exp. Med. 8, 21991–21998. Available online at: /ISSN:1940-5901/IJCEM0013609
    1. Hunderfund A. L., Roberts R. O., Slusser T. C., Leibson C. L., Geda Y. E., Ivnik R. J., et al. . (2006). Mortality in amnestic mild cognitive impairment: a prospective community study. Neurology 67, 1764–1768. 10.1212/01.WNL.0000244430.39969.5f
    1. International Diabetes Federation (2015). IDF Diabetes Atlas Seventh Edition 2015. Brussels: International Diabetes Federation. Available online at:
    1. Li H., Jia J., Yang Z. (2016). Mini-mental state examination in elderly chinese: a population-based normative study. J. Alzheimers Dis. 53, 487–496. 10.3233/JAD-160119
    1. Lu J., Li D., Li F., Zhou A., Wang F., Zuo X., et al. . (2011). Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study. J. Geriatr. Psychiatry Neurol. 24, 184–190. 10.1177/0891988711422528
    1. Lv H., Wang Z., Tong E., Williams L. M., Zaharchuk G., Zeineh M., et al. . (2018). Resting-state functional MRI: everything that nonexperts have always wanted to know. Am. J. Neuroradiol. [Epub ahead of print]. 10.3174/ajnr.a5527
    1. Mayeda E. R., Whitmer R. A., Yaffe K. (2015). Diabetes and cognition. Clin. Geriatr. Med. 31, 101–115, ix. 10.1016/j.cger.2014.08.021
    1. Moran C., Phan T. G., Chen J., Blizzard L., Beare R., Venn A., et al. . (2013). Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care 36, 4036–4042. 10.2337/dc13-0143
    1. Moulton C. D., Costafreda S. G., Horton P., Ismail K., Fu C. H. (2015). Meta-analyses of structural regional cerebral effects in type 1 and type 2 diabetes. Brain Imaging Behav. 9, 651–662. 10.1007/s11682-014-9348-2
    1. Musen G., Jacobson A. M., Bolo N. R., Simonson D. C., Shenton M. E., McCartney R. L., et al. . (2012). Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes 61, 2375–2379. 10.2337/db11-1669
    1. Peltier J., Roussel M., Gerard Y., Lassonde M., Deramond H., Le Gars D., et al. . (2012). Functional consequences of a section of the anterior part of the body of the corpus callosum: evidence from an interhemispheric transcallosal approach. J. Neurol. 259, 1860–1867. 10.1007/s00415-012-6421-x
    1. Reijmer Y. D., Brundel M., De Bresser J., Kappelle L. J., Leemans A., Biessels G. J., et al. . (2013). Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes: a diffusion tensor imaging study. Diabetes Care 36, 137–144. 10.2337/dc12-0493
    1. Reijmer Y. D., Van Den Berg E., Ruis C., Kappelle L. J., Biessels G. J. (2010). Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 26, 507–519. 10.1002/dmrr.1112
    1. Roberts R. O., Knopman D. S., Przybelski S. A., Mielke M. M., Kantarci K., Preboske G. M., et al. . (2014). Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology 82, 1132–1141. 10.1212/wnl.0000000000000269
    1. Smith C. D., Chebrolu H., Wekstein D. R., Schmitt F. A., Markesbery W. R. (2007). Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol. Aging 28, 1075–1087. 10.1016/j.neurobiolaging.2006.05.018
    1. Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E., et al. . (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505. 10.1016/j.neuroimage.2006.02.024
    1. Tuligenga R. H., Dugravot A., Tabak A. G., Elbaz A., Brunner E. J., Kivimaki M., et al. . (2014). Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. Lancet Diabetes Endocrinol. 2, 228–235. 10.1016/s2213-8587(13)70192-x
    1. van Bloemendaal L., Ijzerman R. G., Ten Kulve J. S., Barkhof F., Diamant M., Veltman D. J., et al. . (2016). Alterations in white matter volume and integrity in obesity and type 2 diabetes. Metab. Brain Dis. 31, 621–629. 10.1007/s11011-016-9792-3
    1. van Bussel F. C., Backes W. H., Hofman P. A., Van Boxtel M. P., Schram M. T., Stehouwer C. D., et al. . (2016). Altered hippocampal white matter connectivity in Type 2 Diabetes Mellitus and memory decrements. J. Neuroendocrinol. 28:12366. 10.1111/jne.12366
    1. Wang Y. F., Ji X. M., Lu G. M., Zhang L. J. (2016). Resting-state functional MR imaging shed insights into the brain of diabetes. Metab. Brain Dis. 31, 993–1002. 10.1007/s11011-016-9872-4
    1. Woolrich M. W., Jbabdi S., Patenaude B., Chappell M., Makni S., Behrens T., et al. . (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage 45, S173–S186. 10.1016/j.neuroimage.2008.10.055
    1. Xi Q., Zhao X., Wang P., Guo Q., Jiang H., Cao X., et al. . (2012). Spontaneous brain activity in mild cognitive impairment revealed by amplitude of low-frequency fluctuation analysis: a resting-state fMRI study. Radiol. Med. 117, 865–871. 10.1007/s11547-011-0780-8
    1. Xia W., Wang S., Rao H., Spaeth A. M., Wang P., Yang Y., et al. . (2015). Disrupted resting-state attentional networks in T2DM patients. Sci. Rep. 5:11148. 10.1038/srep11148
    1. Xia W., Wang S., Sun Z., Bai F., Zhou Y., Yang Y., et al. . (2013). Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology 38, 2493–2501. 10.1016/j.psyneuen.2013.05.012
    1. Yang C., Devisser A., Martinez J. A., Poliakov I., Rosales-Hernandez A., Ayer A., et al. . (2011). Differential impact of diabetes and hypertension in the brain: adverse effects in white matter. Neurobiol. Dis. 42, 446–458. 10.1016/j.nbd.2011.02.007
    1. Yau P. L., Kluger A., Borod J. C., Convit A. (2014). Neural substrates of verbal memory impairments in adults with type 2 diabetes mellitus. J. Clin. Exp. Neuropsychol. 36, 74–87. 10.1080/13803395.2013.869310
    1. Yuan X., Han Y., Wei Y., Xia M., Sheng C., Jia J., et al. . (2016). Regional homogeneity changes in amnestic mild cognitive impairment patients. Neurosci. Lett. 629, 1–8. 10.1016/j.neulet.2016.06.047
    1. Zhang J., Wang Y., Wang J., Zhou X., Shu N., Wang Y., et al. . (2014). White matter integrity disruptions associated with cognitive impairments in type 2 diabetic patients. Diabetes 63, 3596–3605. 10.2337/db14-0342
    1. Zhang Y., Zhang X., Zhang J., Liu C., Yuan Q., Yin X., et al. . (2014). Gray matter volume abnormalities in type 2 diabetes mellitus with and without mild cognitive impairment. Neurosci. Lett. 562, 1–6. 10.1016/j.neulet.2014.01.006
    1. Zhou H., Lu W., Shi Y., Bai F., Chang J., Yuan Y., et al. . (2010). Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neurosci. Lett. 473, 5–10. 10.1016/j.neulet.2009.12.057

Source: PubMed

3
S'abonner