Clinical and laboratory studies of the novel cyclin-dependent kinase inhibitor dinaciclib (SCH 727965) in acute leukemias

Ivana Gojo, Mariola Sadowska, Alison Walker, Eric J Feldman, Swaminathan Padmanabhan Iyer, Maria R Baer, Edward A Sausville, Rena G Lapidus, Da Zhang, Yali Zhu, Ying-Ming Jou, Jennifer Poon, Karen Small, Rajat Bannerji, Ivana Gojo, Mariola Sadowska, Alison Walker, Eric J Feldman, Swaminathan Padmanabhan Iyer, Maria R Baer, Edward A Sausville, Rena G Lapidus, Da Zhang, Yali Zhu, Ying-Ming Jou, Jennifer Poon, Karen Small, Rajat Bannerji

Abstract

Purpose: Dinaciclib inhibits cyclin-dependent kinases 1, 2, 5, and 9 with a better therapeutic index than flavopiridol in preclinical studies. This study assessed the activity of dinaciclib in acute leukemia both in the clinic and in vitro.

Methods: Adults with relapsed/refractory acute myeloid leukemia (n = 14) and acute lymphoid leukemia (n = 6) were treated with dinaciclib 50 mg/m(2) given as a 2-h infusion every 21 days.

Results: Most patients had dramatic but transient reduction in circulating blasts; however, no remissions were achieved on this schedule. The most common toxicities were gastrointestinal, fatigue, transaminitis, and clinical and laboratory manifestations of tumor lysis syndrome, including one patient who died of acute renal failure. Dinaciclib pharmacokinetics showed rapid (2 h) achievement of maximum concentration and a short elimination/distribution phase. Pharmacodynamic studies demonstrated in vivo inhibition of Mcl-1 expression and induction of PARP cleavage in patients' peripheral blood mononuclear cells 4 h after dinaciclib infusion, but the effects were lost by 24 h and did not correlate with clinical outcome. Correlative in vitro studies showed that prolonged exposures to dinaciclib, at clinically attainable concentrations, result in improved leukemia cell kill.

Conclusions: While dinaciclib given as a 2-h bolus did not exhibit durable clinical activity, pharmacokinetic and pharmacodynamic data support the exploration of prolonged infusion schedules in future trials in patients with acute leukemias.

Figures

Fig. 1
Fig. 1
The effects of dinaciclib on circulating WBCs, pharmacokinetics, and pharmacodynamics. a Graph demonstrating rapid decline in the WBC count in AML patients after treatment with dinaciclib, followed by gradual recovery, usually by day 15. b Graph demonstrating rapid decline in the WBC count in ALL patients after treatment with dinaciclib. c Population pharmacokinetic (PPK) model-based prediction of plasma concentration versus time profiles following a single 2-h infusion of 50 mg/m2 dinaciclib. d Western blot analysis of protein lysates obtained from PBMC collected prior to and at 4 and 24 h after dinaciclib infusion to measure the expression of p-Rb and Mcl-1 and induction of PARP cleavage. β-actin controls are shown to document equivalent loading and transfer of proteins. Lanes were loaded with 8–25 μg of protein
Fig. 2
Fig. 2
Prolonged exposure to dinaciclib effectively inhibits proliferation, induces apoptosis, and down-regulates Mcl-1 and phospho-Rb expression in primary leukemia cells. a Six primary AML samples were exposed to DMSO (control) or dinaciclib (0.0004–10 μM) for 24 h and the IC50 values were estimated using the WST-1 assay. b Primary AML cells (AML 08) were exposed to dinaciclib (2, 20, and 200 nM) for the indicated times and the extent of cell death was monitored by measuring Annexin V/PI staining by flow cytometry. c Five primary AML and ALL samples were exposed to DMSO (control) and dinaciclib (20 and 200 nM) for 6 and/or 24 h, after which whole cells were lysed and proteins extracted, and subjected to Western blot analysis to measure the expression of PARP, Mcl-1, p-Rb. β-actin controls are shown to document equivalent loading and transfer of proteins. Lanes were loaded with 8–25 μg of protein

References

    1. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–166. doi: 10.1038/nrc2602.
    1. Sausville EA. Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol Med. 2002;8(4 Suppl):S32–37. doi: 10.1016/S1471-4914(02)02308-0.
    1. Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006;24(11):1770–1783. doi: 10.1200/JCO.2005.03.7689.
    1. Pines J. The cell cycle kinases. Semin Cancer Biol. 1994;5(4):305–313.
    1. Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994;79(4):551–555. doi: 10.1016/0092-8674(94)90540-1.
    1. Morgan DO. Principles of CDK regulation. Nature. 1995;374(6518):131–134. doi: 10.1038/374131a0.
    1. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–1512. doi: 10.1101/gad.13.12.1501.
    1. Dhariwala FA, Rajadhyaksha MS. An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol. 2008;28(3):351–369. doi: 10.1007/s10571-007-9242-1.
    1. Garriga J, Grana X. Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene. 2004;337:15–23. doi: 10.1016/j.gene.2004.05.007.
    1. Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem. 1996;271(43):27176–27183. doi: 10.1074/jbc.271.43.27176.
    1. Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P. A structural perspective of CTD function. Genes Dev. 2005;19(12):1401–1415. doi: 10.1101/gad.1318105.
    1. Oelgeschlager T. Regulation of RNA polymerase II activity by CTD phosphorylation and cell cycle control. J Cell Physiol. 2002;190(2):160–169. doi: 10.1002/jcp.10058.
    1. Chen R, Keating MJ, Gandhi V, Plunkett W. Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood. 2005;106(7):2513–2519. doi: 10.1182/blood-2005-04-1678.
    1. Gojo I, Zhang B, Fenton RG. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin Cancer Res. 2002;8(11):3527–3538.
    1. Kitada S, Zapata JM, Andreeff M, Reed JC. Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood. 2000;96(2):393–397.
    1. Lam LT, Pickeral OK, Peng AC, Rosenwald A, Hurt EM, Giltnane JM, Averett LM, Zhao H, Davis RE, Sathyamoorthy M, Wahl LM, Harris ED, Mikovits JA, Monks AP, Hollingshead MG, Sausville EA, Staudt LM (2001) Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2(10):RESEARCH0041
    1. Cicenas J, Valius M. The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2011;137(10):1409–1418. doi: 10.1007/s00432-011-1039-4.
    1. Massard C, Soria JC, Anthoney DA, Proctor A, Scaburri A, Pacciarini MA, Laffranchi B, Pellizzoni C, Kroemer G, Armand JP, Balheda R, Twelves CJ. A first in man, phase I dose-escalation study of PHA-793887, an inhibitor of multiple cyclin-dependent kinases (CDK2, 1 and 4) reveals unexpected hepatotoxicity in patients with solid tumors. Cell Cycle. 2011;10(6):963–970. doi: 10.4161/cc.10.6.15075.
    1. Lin TS, Ruppert AS, Johnson AJ, Fischer B, Heerema NA, Andritsos LA, Blum KA, Flynn JM, Jones JA, Hu W, Moran ME, Mitchell SM, Smith LL, Wagner AJ, Raymond CA, Schaaf LJ, Phelps MA, Villalona-Calero MA, Grever MR, Byrd JC. Phase II study of flavopiridol in relapsed chronic lymphocytic leukemia demonstrating high response rates in genetically high-risk disease. J Clin Oncol. 2009;27(35):6012–6018. doi: 10.1200/JCO.2009.22.6944.
    1. Phelps MA, Lin TS, Johnson AJ, Hurh E, Rozewski DM, Farley KL, Wu D, Blum KA, Fischer B, Mitchell SM, Moran ME, Brooker-McEldowney M, Heerema NA, Jarjoura D, Schaaf LJ, Byrd JC, Grever MR, Dalton JT. Clinical response and pharmacokinetics from a phase 1 study of an active dosing schedule of flavopiridol in relapsed chronic lymphocytic leukemia. Blood. 2009;113(12):2637–2645. doi: 10.1182/blood-2008-07-168583.
    1. Blum W, Phelps MA, Klisovic RB, Rozewski DM, Ni W, Albanese KA, Rovin B, Kefauver C, Devine SM, Lucas DM, Johnson A, Schaaf LJ, Byrd JC, Marcucci G, Grever MR. Phase I clinical and pharmacokinetic study of a novel schedule of flavopiridol in relapsed or refractory acute leukemias. Haematologica. 2010;95(7):1098–1105. doi: 10.3324/haematol.2009.017103.
    1. Karp JE, Ross DD, Yang W, Tidwell ML, Wei Y, Greer J, Mann DL, Nakanishi T, Wright JJ, Colevas AD. Timed sequential therapy of acute leukemia with flavopiridol: in vitro model for a phase I clinical trial. Clin Cancer Res. 2003;9(1):307–315.
    1. Karp JE, Blackford A, Smith BD, Alino K, Seung AH, Bolanos-Meade J, Greer JM, Carraway HE, Gore SD, Jones RJ, Levis MJ, McDevitt MA, Doyle LA, Wright JJ. Clinical activity of sequential flavopiridol, cytosine arabinoside, and mitoxantrone for adults with newly diagnosed, poor-risk acute myelogenous leukemia. Leuk Res. 2010;34(7):877–882. doi: 10.1016/j.leukres.2009.11.007.
    1. Karp JE, Passaniti A, Gojo I, Kaufmann S, Bible K, Garimella TS, Greer J, Briel J, Smith BD, Gore SD, Tidwell ML, Ross DD, Wright JJ, Colevas AD, Bauer KS. Phase I and pharmacokinetic study of flavopiridol followed by 1-beta-d-arabinofuranosylcytosine and mitoxantrone in relapsed and refractory adult acute leukemias. Clin Cancer Res. 2005;11(23):8403–8412. doi: 10.1158/1078-0432.CCR-05-1201.
    1. Karp JE, Smith BD, Levis MJ, Gore SD, Greer J, Hattenburg C, Briel J, Jones RJ, Wright JJ, Colevas AD. Sequential flavopiridol, cytosine arabinoside, and mitoxantrone: a phase II trial in adults with poor-risk acute myelogenous leukemia. Clin Cancer Res. 2007;13(15):4467–4473. doi: 10.1158/1078-0432.CCR-07-0381.
    1. Karp JE, Smith BD, Resar LS, Greer JM, Blackford A, Zhao M, Moton-Nelson D, Alino K, Levis MJ, Gore SD, Joseph B, Carraway H, McDevitt MA, Bagain L, Mackey K, Briel J, Doyle LA, Wright JJ, Rudek MA. Phase 1 and pharmacokinetic study of bolus-infusion flavopiridol followed by cytosine arabinoside and mitoxantrone for acute leukemias. Blood. 2011;117(12):3302–3310. doi: 10.1182/blood-2010-09-310862.
    1. Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D, Seghezzi W, Paruch K, Dwyer MP, Doll R, Nomeir A, Windsor W, Fischmann T, Wang Y, Oft M, Chen T, Kirschmeier P, Lees EM. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther. 2010;9(8):2344–2353. doi: 10.1158/1535-7163.MCT-10-0324.
    1. Fu W, Ma L, Chu B, Wang X, Bui MM, Gemmer J, Altiok S, Pledger WJ. The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol Cancer Ther. 2011;10(6):1018–1027. doi: 10.1158/1535-7163.MCT-11-0167.
    1. Feldmann G, Mishra A, Bisht S, Karikari C, Garrido-Laguna I, Rasheed Z, Ottenhof NA, Dadon T, Alvarez H, Fendrich V, Rajeshkumar NV, Matsui W, Brossart P, Hidalgo M, Bannerji R, Maitra A, Nelkin BD. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biol Ther. 2011;12(7):598–609. doi: 10.4161/cbt.12.7.16475.
    1. Gorlick R, Kolb EA, Houghton PJ, Morton CL, Neale G, Keir ST, Carol H, Lock R, Phelps D, Kang MH, Reynolds CP, Maris JM, Billups C, Smith MA. Initial testing (stage 1) of the cyclin dependent kinase inhibitor SCH 727965 (dinaciclib) by the pediatric preclinical testing program. Pediatr Blood Cancer. 2012;59(7):1266–1274. doi: 10.1002/pbc.24073.
    1. Nemunaitis J, Saltzman M, Rosenberg MA, Khaira D, Small K, Kirschmeier P, Statkevich P, Abutarif M, Yao S, Bannerji R (2009) A phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of SCH 727965, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. J Clin Oncol 27:15s (suppl; abstr 3535)
    1. Mita MM, Mita AC, Moseley J, Poon J, Small KA, Jou Y, Kirschmeier P, Zhang D, Statkevich P, Sankhala KK, Sarantopoulos J, Cleary JM, Chirieac LR, Rodig S, Bannerji R, Shapiro GI (2011) A phase I study of the CDK inhibitor dinaciclib (SCH 727965) administered every 3 weeks in patients with advanced malignancies: final results. J Clin Oncol 29 (suppl; abstr 3080)
    1. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH, Schiffer CA, Doehner H, Tallman MS, Lister TA, Lo-Coco F, Willemze R, Biondi A, Hiddemann W, Larson RA, Lowenberg B, Sanz MA, Head DR, Ohno R, Bloomfield CD, International Working Group for Diagnosis SoRCTO, Reporting Standards for Therapeutic Trials in Acute Myeloid L (2003) Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 21(24):4642–4649
    1. Zhang D, Mita M, Shapiro GI, Poon J, Small K, Tzontcheva A, Kantesaria B, Zhu Y, Bannerji R, Statkevich P. Effect of aprepitant on the pharmacokinetics of the cyclin-dependent kinase inhibitor dinaciclib in patients with advanced malignancies. Cancer Chemother Pharmacol. 2012;70:891–898. doi: 10.1007/s00280-012-1967-y.
    1. Cairo MS, Bishop M. Tumour lysis syndrome: new therapeutic strategies and classification. Br J Haematol. 2004;127(1):3–11. doi: 10.1111/j.1365-2141.2004.05094.x.
    1. Blum KA, Ruppert AS, Woyach JA, Jones JA, Andritsos L, Flynn JM, Rovin B, Villalona-Calero M, Ji J, Phelps M, Johnson AJ, Grever MR, Byrd JC. Risk factors for tumor lysis syndrome in patients with chronic lymphocytic leukemia treated with the cyclin-dependent kinase inhibitor, flavopiridol. Leukemia. 2011;25(9):1444–1451. doi: 10.1038/leu.2011.109.
    1. Flynn JM, Jones JA, Andritsos L, Blum KA, Johnson AJ, Hessler J, Heerema NA, Wiley E, Poon J, Small KA, Jou Y, Zhang D, Statkevich P, Grever MR, Bannerji R, Byrd JC (2011) Phase I study of the CDK inhibitor dinaciclib (SCH 727965) in patients with relapsed/refractory CLL. J Clin Oncol 29 (suppl; abstr 6623)
    1. Woyach JA, Lozanski G, Ruppert AS, Lozanski A, Blum KA, Jones JA, Flynn JM, Johnson AJ, Grever MR, Heerema NA, Byrd JC. Outcome of patients with relapsed or refractory chronic lymphocytic leukemia treated with flavopiridol: impact of genetic features. Leukemia. 2012;26(6):1442–1444. doi: 10.1038/leu.2011.375.

Source: PubMed

3
S'abonner