Comparing New-Generation Candidate Vaccines against Human Orthopoxvirus Infections

R A Maksyutov, S N Yakubitskyi, I V Kolosova, S N Shchelkunov, R A Maksyutov, S N Yakubitskyi, I V Kolosova, S N Shchelkunov

Abstract

The lack of immunity to the variola virus in the population, increasingly more frequent cases of human orthopoxvirus infection, and increased risk of the use of the variola virus (VARV) as a bioterrorism agent call for the development of modern, safe vaccines against orthopoxvirus infections. We previously developed a polyvalent DNA vaccine based on five VARV antigens and an attenuated variant of the vaccinia virus (VACV) with targeted deletion of six genes (VACΔ6). Independent experiments demonstrated that triple immunization with a DNA vaccine and double immunization with VACΔ6 provide protection to mice against a lethal dose (10 LD50) of the ectromelia virus (ECTV), which is highly pathogenic for mice. The present work was aimed at comparing the immunity to smallpox generated by various immunization protocols using the DNA vaccine and VACΔ6. It has been established that immunization of mice with a polyvalent DNA vaccine, followed by boosting with recombinant VACΔ6, as well as double immunization with VACΔ6, induces production of VACV-neutralizing antibodies and provides protection to mice against a 150 LD50 dose of ECTV. The proposed immunization protocols can be used to develop safe vaccination strategies against smallpox and other human orthopoxvirus infections.

Keywords: DNA vaccine; protective potential; smallpox; vaccinia virus; virulence genes.

Figures

Fig. 1
Fig. 1
Result of electrophoretic separation of DNA fragments produced after hydrolysis of the recombinant plasmid with the restriction endonucleasesAsuNHI and HindIII on a 1.2% agarose gel. A, A’, M’, F, B – DNA fragments obtained for the recombinant plasmids pcDNA-A30, pcDNA-A36, pcDNA-M1, pcDNA-F8, and pcDNA-B7, respectively. M – DNA ladder, fragment length in bp is shown on the left
Fig. 2
Fig. 2
Verification of deletions/insertions by PCR. PCR products formed from DNA of the parent clone VACV LIVP and VACΔ6 with deletion of six virulence genes. A, B, C, N, J, A’ – PCR products obtained with the appropriate primer pairs for the A56R, B8R, C3L, N1L, J2R, and A35Rgenes. M – DNA ladder, fragment length in bp is shown on the left
Fig. 3
Fig. 3
The level of serum-neutralizing activity against VACV, following double immunization with study preparations (DNA vaccine, VACΔ6 and LIVP VACV strains)
Fig. 4
Fig. 4
Time-course of mortality after double immunization of mice with the preparations under study(DNA vaccine, VACΔ6 and LIVP VACV strains), followed by challenge with ECTV at a dose of 150 LD50/mouse

References

    1. Marennikova S.S., Shchelkunov S.N. Pathogenic for humans orthopoxviruses. M: KMK Scientific Press Ltd, 1998. 386 p. 1988.
    1. Stephenson J., J. Am. Med. Assoc. 2003;290:23–24.
    1. Lewis-Jones S.. Curr. Opin. Infect. Dis. 2004;17:81–89.
    1. Campe H., Zimmermann P., Glos K., Bayer M., Bergemann H., Dreweck C., Graf P., Weber B.K., Meyer H., Büttner M.. Emerg. Infect. Dis. 2009;15:777–780.
    1. Ninove L., Domart Y., Vervel C., Voinot C., Salez N., Raoult D., Meyer H., Capek I., Zandotti C., Charrel R.N.. Emerg. Infect. Dis. 2009;15:781–784.
    1. Shchelkunov S.N.. PLoS Pathogens. 2013;9:e1003756.
    1. Shchelkunov S.N.. Vaccine. 2011;29(4):D49–D53.
    1. Breman J.G., Henderson D.A.. N. Engl. J. Med. 2002;346:1300–1308.
    1. Yakubitsky S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N., Acta Naturae. 2015;7(4):113–121.
    1. Yakubitsky S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N., Dokl. Akad. Nauk. 2016;466:241–244.
    1. Maksyutov R.A., Shchelkunov S.N., Russ. J. Immunol. 2010;4:25–32.
    1. . Maksyutov R.A., Gavrilova E.V., Kochneva G.V., Shchelkunov S.N., J. of Vaccines. 2013
    1. Maksyutov R.A., Shchelkunov S.N., Mol. Gen. Mikrobiol. Virusol. 2011;2:30–34.
    1. Radosevic K., Rodriguez A., Lemckert A., Goudsmit J.. Expert Rev. Vaccines. 2009;8:577–592.
    1. Mironova L.L., Hapichev Yu.H. Line heteroploid cell 4647: study, application, prospects. M., 1994. 146 p. 1994.
    1. Leparc-Goffart I., Poirier B., Garin D., Tissier M.H., Fuchs F., Crance J.M.. J. Clin. Virol. 2005;32:47–52.
    1. Martinez M.J., Bray M.P., Huggins J.W.. Arch. Pathol. Lab. Med. 2000;124:362–377.
    1. Ashmarin I.P., Vorobiev A.A. Statistical methods in microbiological studies. L.: Gos. izd. med. lit., 1962. 186 p. 1962.
    1. Scarnovich M.O., Radaeva I.F., Vdovichenko G.V., Nechaeva E.A., Sergeev A.A., Petrishenko V.A., Plyasunov I.V., Shishkina L.N., Ternovoi V.A., Smetannikova M.A., Vopr. virusol. 2007;2:37–40.
    1. Fenner F., Henderson D.A., Arita I., Jezek Z., Ladnyi I.D. Smallpox and Its Eradication. Geneva: World Health Organization, 1988. 1460 p. 1988.
    1. Gurvich E.B.. Vaccine. 1992;10(2):96–97.
    1. Chernos V.I., Chelyapin N.V., Antonova T.P., Vopr. virusol. 1990;2:132–135.
    1. Kennedy J.S., Frey S.E., Yan L., Rothman A.L., Cruz J., Newman F.K., Orphin L., Belshe R.B., Ennis F.A.. J. Infect. Dis. 2004;190(7):1286–1294.
    1. Ennis F.A., Cruz J., Demkowicz W.E., Rothman A.L., McClain D.J.. J. Infect. Dis. 2002;185(11):1657–1659.

Source: PubMed

3
S'abonner