Viral load-guided immunosuppression after lung transplantation (VIGILung)-study protocol for a randomized controlled trial

Jens Gottlieb, Alexander Reuss, Konstantin Mayer, Karin Weide, Carmen Schade-Brittinger, Susanne Hoyer, Peter Jaksch, Jens Gottlieb, Alexander Reuss, Konstantin Mayer, Karin Weide, Carmen Schade-Brittinger, Susanne Hoyer, Peter Jaksch

Abstract

Background: Immunosuppression including high-dose calcineurin inhibitors (CNI) is essential after lung transplantation. Dosing is usually guided by therapeutic drug monitoring adjusted to target trough levels of CNIs to keep the balance between over-dose causing severe toxicity and increased risk of infections or under-dose with a risk of graft injury. Adaptation of CNI-based immunosuppression by monitoring of torque teno virus (TTV), a latent nonpathogenic DNA virus, measured in the whole blood in addition to conventional therapeutic drug monitoring may reduce the toxicity of immunosuppression with similar efficacy.

Methods/design: An open-label, randomized, controlled, parallel-group, multicenter trial in lung transplant recipients will be conducted to investigate the safety and efficacy of immunosuppression guided by TTV monitoring as an add-on to conventional therapeutic drug monitoring. Adult lung transplant recipients 21 to 42 days after transplantation are eligible to participate. Patients (N = 144) will be randomized 1:1 to the experimental intervention (arm 1: immunosuppression guided by TTV monitoring in addition to conventional therapeutic drug monitoring of tacrolimus trough levels) and control intervention (arm 2: conventional therapeutic drug monitoring). Outcomes will be assessed 12 months after randomization with the change in glomerular filtration rate as the primary endpoint. Secondary endpoints will be additional measurements of renal function, allograft function, incidence of acute rejections, incidence of chronic lung allograft dysfunction, graft loss, and infections.

Discussion: The results of this randomized controlled trial may reduce the toxicity of immunosuppression after lung transplantation while maintaining the efficacy of immunosuppression. Study results are transferable to all other solid organ transplantations.

Trial registration: ClinicalTrials.gov NCT04198506 . Registered on 12 December 2019.

Keywords: Graft rejection; Immunosuppression; Kidney failure; Lung transplantation; Randomized controlled trial; Torque teno virus.

Conflict of interest statement

The authors declare to have no competing interests.

Figures

Fig. 1
Fig. 1
Trial flow chart and treatment groups
Fig. 2
Fig. 2
Adaptation of immunosuppression in the treatment groups
Fig. 3
Fig. 3
Data collection time points (SPIRIT figure)

References

    1. Ivulich S, Westall G, Dooley M, Snell G. The evolution of lung transplant immunosuppression. Drugs. 2018;78(10):965–982.
    1. Yusen RD, Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Adult Lung and Heart-Lung Transplant Report--2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):965–978.
    1. Gorzer I, Jaksch P, Kundi M, Seitz T, Klepetko W, Puchhammer-Stockl E. Pre-transplant plasma torque teno virus load and increase dynamics after lung transplantation. PLoS One. 2015;10(3):e0122975.
    1. Gorzer I, Jaksch P, Strassl R, Klepetko W, Puchhammer-Stockl E. Association between plasma torque teno virus level and chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant. 2017;36(3):366–368.
    1. Jaksch P, Kundi M, Gorzer I, Murakozy G, Lambers C, Benazzo A, et al. Torque teno virus as a novel biomarker targeting the efficacy of immunosuppression after lung transplantation. J Infect Dis. 2018;218(12):1922–1928.
    1. Ravaioli M, Neri F, Lazzarotto T, Bertuzzo VR, Di Gioia P, Stacchini G, et al. Immunosuppression modifications based on an immune response assay: results of a randomized, controlled trial. Transplantation. 2015;99(8):1625–1632.
    1. De Vlaminck I, Khush KK, Strehl C, Kohli B, Luikart H, Neff NF, et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell. 2013;155(5):1178–1187.
    1. Gottlieb J, Neurohr C, Muller-Quernheim J, Wirtz H, Sill B, Wilkens H, et al. A randomized trial of everolimus-based quadruple therapy vs standard triple therapy early after lung transplantation. Am J Transplant. 2019;19(6):1759–1769.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612.
    1. Jaksch P, Ankersmit J, Scheed A, Kocher A, Murakozy G, Klepetko W, et al. Alemtuzumab in lung transplantation: an open-label, randomized, prospective single center study. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2014;14(8):1839–1845.
    1. Hachem RR, Yusen RD, Chakinala MM, Meyers BF, Lynch JP, Aloush AA, et al. A randomized controlled trial of tacrolimus versus cyclosporine after lung transplantation. J Heart Lung Transplant. 2007;26(10):1012–1018.
    1. Maggi F, Pifferi M, Fornai C, Andreoli E, Tempestini E, Vatteroni M, et al. TT virus in the nasal secretions of children with acute respiratory diseases: relations to viremia and disease severity. J Virol. 2003;77(4):2418–2425.
    1. Strueber M, Warnecke G, Fuge J, Simon AR, Zhang R, Welte T, et al. Everolimus versus mycophenolate mofetil de novo after lung transplantation: a prospective, randomized, open-label trial. Am J Transplant. 2016;16(11):3171–3180.
    1. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–1446.
    1. Humar A, Michaels M, Monitoring AIWGoID American Society of Transplantation recommendations for screening, monitoring and reporting of infectious complications in immunosuppression trials in recipients of organ transplantation. Am J Transplant. 2006;6(2):262–274.
    1. Ljungman P, Boeckh M, Hirsch HH, Josephson F, Lundgren J, Nichols G, et al. Definitions of cytomegalovirus infection and disease in transplant patients for use in clinical trials. Clin Infect Dis. 2017;64(1):87–91.
    1. Verleden GM, Glanville AR, Lease ED, Fisher AJ, Calabrese F, Corris PA, et al. Chronic lung allograft dysfunction: definition, diagnostic criteria, and approaches to treatment-a consensus report from the pulmonary council of the ISHLT. J Heart Lung Transplant. 2019;38(5):493–503.
    1. Stewart S, Fishbein MC, Snell GI, Berry GJ, Boehler A, Burke MM, et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant. 2007;26(12):1229–1242.
    1. Degen DA, Janardan J, Barraclough KA, Schneider HG, Barber T, Barton H, et al. Predictive performance of different kidney function estimation equations in lung transplant patients. Clin Biochem. 2017;50(7–8):385–393.
    1. Kayser M, Valtin C, Greer M, Karow B, Fuge J, Gottlieb J. Video consultation during the COVID-19 pandemic: a single center’s experience with lung transplant recipients. Telemed J E Health. 2020. 10.1089/tmj.2020.0170 Online ahead of print.

Source: PubMed

3
S'abonner