Expectancy of stress-reducing aromatherapy effect and performance on a stress-sensitive cognitive task

Irina Chamine, Barry S Oken, Irina Chamine, Barry S Oken

Abstract

Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG) task performance and event related potentials (ERP) components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo) and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime). GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention.

Figures

Figure 1
Figure 1
(a) ERP waveforms for aroma groups, (b) ERP waveforms for prime subgroups. Note: all data presented are from the Cz channel. Positive ERP values are plotted upwards.

References

    1. Kremen W. S., Lachman M. E., Pruessner J. C., Sliwinski M., Wilson R. S. Mechanisms of age-related cognitive change and targets for intervention: social interactions and stress. Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2012;67(7):760–765. doi: 10.1093/gerona/gls125.
    1. Butje A., Repede E., Shattell M. M. Healing scents: an overview of clinical aromatherapy for emotional distress. The Journal of Psychosocial Nursing and Mental Health Services. 2008;46(10):46–52. doi: 10.3928/02793695-20081001-12.
    1. Horowitz S. Aromatherapy: current and emerging applications. Alternative and Complementary Therapies. 2011;17(1):26–31. doi: 10.1089/act.2011.17103.
    1. Lee M. S., Choi J., Posadzki P., Ernst E. Aromatherapy for health care: an overview of systematic reviews. Maturitas. 2012;71(3):257–260. doi: 10.1016/j.maturitas.2011.12.018.
    1. Herz R. S. Aromatherapy facts and fictions: a scientific analysis of olfactory effects on mood, physiology and behavior. International Journal of Neuroscience. 2009;119(2):263–290. doi: 10.1080/00207450802333953.
    1. Ilmberger J., Heuberger E., Mahrhofer C., Dessovic H., Kowarik D., Buchbauer G. The influence of essential oils on human attention. I: alertness. Chemical Senses. 2001;26(3):239–245. doi: 10.1093/chemse/26.3.239.
    1. Diego M. A., Jones N. A., Field T., et al. Aromatherapy positively affects mood, EEG patterns of alertness and math computations. International Journal of Neuroscience. 1998;96(3-4):217–224. doi: 10.3109/00207459808986469.
    1. Holmes C., Hopkins V., Hensford C., MacLaughlin V., Wilkinson D., Rosenvinge H. Lavender oil as a treatment for agitated behaviour in severe dementia: a placebo controlled study. International Journal of Geriatric Psychiatry. 2002;17(4):305–308. doi: 10.1002/gps.593.
    1. Lin P. W.-K., Chan W.-C., Ng B. F.-L., Lam L. C.-W. Efficacy of aromatherapy (Lavandula angustifolia) as an intervention for agitated behaviours in Chinese older persons with dementia: a cross-over randomized trial. International Journal of Geriatric Psychiatry. 2007;22(5):405–410. doi: 10.1002/gps.1688.
    1. Atsumi T., Tonosaki K. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Research. 2007;150(1):89–96. doi: 10.1016/j.psychres.2005.12.012.
    1. Sanders C., Diego M., Fernandez M., Field T., Hernandez-Reif M., Roca A. EEG asymmetry responses to lavender and rosemary aromas in adults and infants. International Journal of Neuroscience. 2002;112(11):1305–1320. doi: 10.1080/00207450290158214.
    1. Takatsuji K., Sugimoto Y., Ishizaki S., Ozaki Y., Matsuyama E., Yamaguchi Y. The effects of examination stress on salivary cortisol, immunoglobulin A, and chromogranin A in nursing students. Biomedical Research. 2008;29(4):221–224. doi: 10.2220/biomedres.29.221.
    1. Toda M., Morimoto K. Effect of lavender aroma on salivary endocrinological stress markers. Archives of Oral Biology. 2008;53(10):964–968. doi: 10.1016/j.archoralbio.2008.04.002.
    1. Field T., Field T., Cullen C., et al. Lavender bath oil reduces stress and crying and enhances sleep in very young infants. Early Human Development. 2008;84(6):399–401. doi: 10.1016/j.earlhumdev.2007.10.008.
    1. Kritsidima M., Newton T., Asimakopoulou K. The effects of lavender scent on dental patient anxiety levels: a cluster randomised-controlled trial. Community Dentistry and Oral Epidemiology. 2010;38(1):83–87. doi: 10.1111/j.1600-0528.2009.00511.x.
    1. Fujii M., Hatakeyama R., Fukuoka Y., et al. Lavender aroma therapy for behavioral and psychological symptoms in dementia patients. Geriatrics and Gerontology International. 2008;8(2):136–138. doi: 10.1111/j.1447-0594.2008.00461.x.
    1. Motomura N., Sakurai A., Yotsuya Y. Reduction of mental stress with lavender odorant. Perceptual and Motor Skills. 2001;93(3):713–718. doi: 10.2466/pms.2001.93.3.713.
    1. Howard S., Hughes B. M. Expectancies, not aroma, explain impact of lavender aromatherapy on psychophysiological indices of relaxation in young healthy women. British Journal of Health Psychology. 2008;13(4):603–617. doi: 10.1348/135910707X238734.
    1. Kiecolt-Glaser J. K., Graham J. E., Malarkey W. B., Porter K., Lemeshow S., Glaser R. Olfactory influences on mood and autonomic, endocrine, and immune function. Psychoneuroendocrinology. 2008;33(3):328–339. doi: 10.1016/j.psyneuen.2007.11.015.
    1. Bent S. Aromatherapy: ineffective treatment or effective placebo? Effective Clinical Practice. 2000;3(4):188–190.
    1. Fonareva I. Physiological, cognitive, and expectancy effects of aromatherapy following acute stress [Ph.D. thesis] Department of Behavioral Neuroscience; 2013.
    1. Arnsten A. F. T. Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience. 2009;10(6):410–422. doi: 10.1038/nrn2648.
    1. Zhang B.-W., Zhao L., Xu J. Electrophysiological activity underlying inhibitory control processes in late-life depression: a Go/Nogo study. Neuroscience Letters. 2007;419(3):225–230. doi: 10.1016/j.neulet.2007.04.013.
    1. Ceballos N. A., Giuliano R. J., Wicha N. Y. Y., Graham R. Acute stress and event-related potential correlates of attention to alcohol images in Social drinkers. Journal of Studies on Alcohol and Drugs. 2012;73(5):761–771.
    1. Schroeder M. M., Lipton R. B., Ritter W., Giesser B. S., Vaughan H. G., Jr. Event-related potential correlates of early processing in normal aging. International Journal of Neuroscience. 1995;80(1–4):371–382. doi: 10.3109/00207459508986110.
    1. Falkenstein M., Hoormann J., Hohnsbein J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica. 1999;101(2-3):267–291. doi: 10.1016/S0001-6918(99)00008-6.
    1. Polich J. Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology. 2007;118(10):2128–2148. doi: 10.1016/j.clinph.2007.04.019.
    1. Knopman D. S., Roberts R. O., Geda Y. E., et al. Validation of the telephone interview for cognitive status-modified in subjects with normal cognition, mild cognitive impairment, or dementia. Neuroepidemiology. 2010;34(1):34–42. doi: 10.1159/000255464.
    1. Cohen S., Kamarck T., Mermelstein R. A global measure of perceived stress. Journal of Health and Social Behavior. 1983;24(4):385–396. doi: 10.2307/2136404.
    1. Pocock S. J., Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics. 1975;31(1):103–115. doi: 10.2307/2529712.
    1. Jackman A. H., Doty R. L. Utility of a three-item smell identification test in detecting olfactory dysfunction. Laryngoscope. 2005;115(12):2209–2212. doi: 10.1097/.
    1. Lovallo W. The cold pressor test and autonomic function: a review and integration. Psychophysiology. 1975;12(3):268–282. doi: 10.1111/j.1469-8986.1975.tb01289.x.
    1. Lang P. J., Bradley M. M., Cuthbert B. N. International Affective Picture System (IAPS): Technical Manual and Affective Ratings. Gainesville, Fla, USA: The Center for Research in Psychophysiology, University of Florida; 1999.
    1. Dedovic K., Renwick R., Mahani N. K., Engert V., Lupien S. J., Pruessner J. C. The montreal imaging stress task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. Journal of Psychiatry and Neuroscience. 2005;30(5):319–325.
    1. Watson D., Clark L. A., Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology. 1988;54(6):1063–1070. doi: 10.1037/0022-3514.54.6.1063.
    1. Oken B. S., Flegal K., Zajdel D., Kishiyama S., Haas M., Peters D. Expectancy effect: impact of pill administration on cognitive performance in healthy seniors. Journal of Clinical and Experimental Neuropsychology. 2008;30(1):7–17. doi: 10.1080/13803390701775428.
    1. Jung T. P., Makeig S., Humphries C., et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiology. 2000;37(2):163–178. doi: 10.1017/s0048577200980259.
    1. Johnstone S. J., Pleffer C. B., Barry R. J., Clarke A. R., Smith J. L. Development of inhibitory processing during the Go/Nogo task. Journal of Psychophysiology. 2005;19(1):11–23. doi: 10.1027/0269-8803.19.1.11.
    1. Fonareva I., Demidenko M. I., Oken B. S. Assessing Sensitivity of Common Physiological Markers of Stress and Evaluating Their Utility for Different Types of Stressors. Miami, Fla, USA: American Psychosomatic Society; 2013.
    1. Gajewski P. D., Falkenstein M. Effects of task complexity on ERP components in Go/Nogo tasks. International Journal of Psychophysiology. 2013;87(3):273–278. doi: 10.1016/j.ijpsycho.2012.08.007.
    1. Eimer M. Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biological Psychology. 1993;35(2):123–138. doi: 10.1016/0301-0511(93)90009-W.
    1. Sehlmeyer C., Konrad C., Zwitserlood P., Arolt V., Falkenstein M., Beste C. ERP indices for response inhibition are related to anxiety-related personality traits. Neuropsychologia. 2010;48(9):2488–2495. doi: 10.1016/j.neuropsychologia.2010.04.022.
    1. Kawashima R., Satoh K., Itoh H., et al. Functional anatomy of GO/NO-GO discrimination and response selection—a PET study in man. Brain Research. 1996;728(1):79–89. doi: 10.1016/s0006-8993(96)00389-7.
    1. Rubia K., Russell T., Overmeyer S., et al. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. NeuroImage. 2001;13(2):250–261. doi: 10.1006/nimg.2000.0685.
    1. Beste C., Willemssen R., Saft C., Falkenstein M. Error processing in normal aging and in basal ganglia disorders. Neuroscience. 2009;159(1):143–149. doi: 10.1016/j.neuroscience.2008.12.030.
    1. Bokura H., Yamaguchi S., Kobayashi S. Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology. 2001;112(12):2224–2232. doi: 10.1016/s1388-2457(01)00691-5.
    1. Falkenstein M. Inhibition, conflict and the Nogo-N2. Clinical Neurophysiology. 2006;117(8):1638–1640. doi: 10.1016/j.clinph.2006.05.002.
    1. de Kloet E. R. Stress in the brain. European Journal of Pharmacology. 2000;405(1–3):187–198. doi: 10.1016/s0014-2999(00)00552-5.
    1. Campbell J., Ehlert U. Acute psychosocial stress: does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology. 2012;37(8):1111–1134. doi: 10.1016/j.psyneuen.2011.12.010.
    1. Benedetti F. Placebo effects: from the neurobiological paradigm to translational implications. Neuron. 2014;84(3):623–637. doi: 10.1016/j.neuron.2014.10.023.
    1. Anderson C., Horne J. A. Placebo response to caffeine improves reaction time performance in sleepy people. Human Psychopharmacology. 2008;23(4):333–336. doi: 10.1002/hup.931.
    1. Green M. W., Taylor M. A., Elliman N. A., Rhodes O. Placebo expectancy effects in the relationship between glucose and cognition. The British Journal of Nutrition. 2001;86(2):173–179. doi: 10.1079/bjn2001398.
    1. Parker S., Garry M., Einstein G. O., McDaniel M. A. A sham drug improves a demanding prospective memory task. Memory. 2011;19(6):606–612. doi: 10.1080/09658211.2011.592500.
    1. Weger U. W., Loughnan S. Mobilizing unused resources: using the placebo concept to enhance cognitive performance. Quarterly Journal of Experimental Psychology. 2013;66(1):23–28. doi: 10.1080/17470218.2012.751117.
    1. Benedetti F., Amanzio M. Mechanisms of the placebo response. Pulmonary Pharmacology and Therapeutics. 2013;26(5):520–523. doi: 10.1016/j.pupt.2013.01.006.
    1. Meissner K., Binge U., Colloca L., Wager T. D., Watson A., Flaten M. A. The placebo effect: advances from different methodological approaches. The Journal of Neuroscience. 2011;31(45):16117–16124. doi: 10.1523/jneurosci.4099-11.2011.
    1. Oken B. S. Placebo effects: clinical aspects and neurobiology. Brain. 2008;131(11):2812–2823. doi: 10.1093/brain/awn116.

Source: PubMed

3
S'abonner