Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial

Joon-Ho Shin, Mi-Young Kim, Ji-Yeong Lee, Yu-Jin Jeon, Suyoung Kim, Soobin Lee, Beomjoo Seo, Younggeun Choi, Joon-Ho Shin, Mi-Young Kim, Ji-Yeong Lee, Yu-Jin Jeon, Suyoung Kim, Soobin Lee, Beomjoo Seo, Younggeun Choi

Abstract

Background: Virtual reality (VR)-based rehabilitation has been reported to have beneficial effects on upper extremity function in stroke survivors; however, there is limited information about its effects on distal upper extremity function and health-related quality of life (HRQoL). The purpose of the present study was to examine the effects of VR-based rehabilitation combined with standard occupational therapy on distal upper extremity function and HRQoL, and compare the findings to those of amount-matched conventional rehabilitation in stroke survivors.

Methods: The present study was a single-blinded, randomized controlled trial. The study included 46 stroke survivors who were randomized to a Smart Glove (SG) group or a conventional intervention (CON) group. In both groups, the interventions were targeted to the distal upper extremity and standard occupational therapy was administered. The primary outcome was the change in the Fugl-Meyer assessment (FM) scores, and the secondary outcomes were the changes in the Jebsen-Taylor hand function test (JTT), Purdue pegboard test, and Stroke Impact Scale (SIS) version 3.0 scores. The outcomes were assessed before the intervention, in the middle of the intervention, immediately after the intervention, and 1 month after the intervention.

Results: The improvements in the FM (FM-total, FM-prox, and FM-dist), JTT (JTT-total and JTT-gross), and SIS (composite and overall SIS, SIS-social participation, and SIS-mobility) scores were significantly greater in the SG group than in the CON group.

Conclusions: VR-based rehabilitation combined with standard occupational therapy might be more effective than amount-matched conventional rehabilitation for improving distal upper extremity function and HRQoL.

Trial registration: This study is registered under the title "Effects of Novel Game Rehabilitation System on Upper Extremity Function of Patients With Stroke" and can be located in https://ichgcp.net/clinical-trials-registry/NCT02029651" title="See in ClinicalTrials.gov">NCT02029651 .

Figures

Fig. 1
Fig. 1
The RAPAEL Smart Glove™ system and the task-specific games of this system
Fig. 2
Fig. 2
Flowchart of the participants through the study. Abbreviations: SG, Smart Glove; CON, conventional intervention
Fig. 3
Fig. 3
Mean and standard errors for the FM scores in the SG and CON groups. Abbreviations: FM, Fugl–Meyer assessment, SG, Smart Glove; CON, conventional intervention
Fig. 4
Fig. 4
Mean and standard errors for the JTT scores in the SG and CON groups. Abbreviations: JTT, Jebsen–Taylor hand function test; SG, Smart Glove; CON, conventional intervention

References

    1. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–2186. doi: 10.1161/.
    1. Broeks JG, Lankhorst GJ, Rumping K, Prevo AJ. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil. 1999;21(8):357–364. doi: 10.1080/096382899297459.
    1. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104.
    1. Fredericks CM, Saladin LK, Fredericks C. Pathophysiology of the motor systems: principles and clinical presentations. Philadelphia: FA Davis; 1996.
    1. French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, et al. Repetitive Task Training for Improving Functional Ability After Stroke. Stroke. 2009;40(4):e98–9.
    1. Liepert J, Bauder H, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–1216. doi: 10.1161/01.STR.31.6.1210.
    1. Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct. Science. 1996;272(5269):1791–1794. doi: 10.1126/science.272.5269.1791.
    1. Maclean N, Pound P, Wolfe C, Rudd A. Qualitative analysis of stroke patients’ motivation for rehabilitation. BMJ. 2000;321(7268):1051–1054. doi: 10.1136/bmj.321.7268.1051.
    1. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2015:CD008349.
    1. Merians AS, Fluet GG, Qiu Q, Saleh S, Lafond I, Davidow A, et al. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis. J Neuroeng Rehabil. 2011;8(27):0003–8.
    1. Tsoupikova D, Stoykov NS, Corrigan M, Thielbar K, Vick R, Li Y, et al. Virtual immersion for post-stroke hand rehabilitation therapy. Ann Biomed Eng. 2015;43(2):467–77.
    1. da Silva CM, Bermudez IBS, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–298.
    1. Thielbar KO, Lord TJ, Fischer HC, Lazzaro EC, Barth KC, Stoykov ME, et al. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabil. 2014;11(1):171.
    1. Van Allen MW. Aids to the examination of the peripheral nervous system. Arch Neurol. 1977;34(1):61–1.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Gagliese L, Weizblit N, Ellis W, Chan VW. The measurement of postoperative pain: a comparison of intensity scales in younger and older surgical patients. Pain. 2005;117(3):412–420. doi: 10.1016/j.pain.2005.07.004.
    1. Choi Y, Gordon J, Park H, Schweighofer N. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke. J Neuroeng Rehabil. 2011;8(42):0003–0008.
    1. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1974;7(1):13–31.
    1. Kim JH, Kim IS, Han TR. New scoring system for jebsen hand function test. J Korean Acad Rehabil. Med. 2007;31(6):623–629.
    1. Duncan PW, Bode RK, Lai SM, Perera S, Investigators GAiNA Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch Phys Med Rehabil. 2003;84(7):950–963. doi: 10.1016/S0003-9993(03)00035-2.
    1. Moriello C, Byrne K, Cieza A, Nash C, Stolee P, Mayo N. Mapping the stroke impact scale (SIS-16) to the International Classification of Functioning, Disability and Health. J Rehabil Med. 2008;40(2):102–106. doi: 10.2340/16501977-0141.
    1. Piron L, Turolla A, Agostini M, Zucconi C, Cortese F, Zampolini M, et al. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med. 2009;41(12):1016–1020. doi: 10.2340/16501977-0459.
    1. Lin K-c, Fu T, Wu C-y, Wang Y-h, Liu J-s, Hsieh C-j, et al. Minimal detectable change and clinically important difference of the Stroke Impact Scale in stroke patients. Neurorehabil Neural Repair. 2010;24(5):486–92.
    1. French B, Leathley M, Sutton C, McAdam J, Thomas L. A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness. Health Technol Assess. 2008;12(30):140. doi: 10.3310/hta12300.
    1. Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task‐specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16(3–4):175–189. doi: 10.1002/oti.275.
    1. Schaefer SY, Patterson CB, Lang CE. Transfer of Training Between Distinct Motor Tasks After Stroke Implications for Task-Specific Approaches to Upper-Extremity Neurorehabilitation. Neurorehabil Neural Repair. 2013;27(7):602–12.
    1. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90. doi: 10.1097/.
    1. Lin KC, Chang YF, Wu CY, Chen YA. Effects of Constraint-Induced Therapy Versus Bilateral Arm Training on Motor Performance, Daily Functions, and Quality of Life in Stroke Survivors. Neurorehabil Neural Repair. 2009;23(5):441-8.
    1. Wu C-y, Chen C-l, Tsai W-c, Lin K-c, Chou S-h. A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in motor impairment, daily functioning, and quality of life. Arch Phys Med Rehabil. 2007;88(3):273–278. doi: 10.1016/j.apmr.2006.11.021.
    1. Pulman J, Buckley E. Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related quality of life in stroke patients: a systematic review. Top Stroke Rehabil. 2013;20(2):171–188. doi: 10.1310/tsr2002-171.
    1. Shin JH, Park SB, Jang SH. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized, controlled study. Comput Biol Med. 2015;63:92-8.
    1. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–240. doi: 10.1177/154596802401105171.
    1. Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil. 2013;10:85.

Source: PubMed

3
S'abonner