Low-Field, Benchtop NMR Spectroscopy as a Potential Tool for Point-of-Care Diagnostics of Metabolic Conditions: Validation, Protocols and Computational Models

Benita C Percival, Martin Grootveld, Miles Gibson, Yasan Osman, Marco Molinari, Fereshteh Jafari, Tarsem Sahota, Mark Martin, Federico Casanova, Melissa L Mather, Mark Edgar, Jinit Masania, Philippe B Wilson, Benita C Percival, Martin Grootveld, Miles Gibson, Yasan Osman, Marco Molinari, Fereshteh Jafari, Tarsem Sahota, Mark Martin, Federico Casanova, Melissa L Mather, Mark Edgar, Jinit Masania, Philippe B Wilson

Abstract

Novel sensing technologies for liquid biopsies offer promising prospects for the early detection of metabolic conditions through omics techniques. Indeed, high-field nuclear magnetic resonance (NMR) facilities are routinely used for metabolomics investigations on a range of biofluids in order to rapidly recognise unusual metabolic patterns in patients suffering from a range of diseases. However, these techniques are restricted by the prohibitively large size and cost of such facilities, suggesting a possible role for smaller, low-field NMR instruments in biofluid analysis. Herein we describe selected biomolecule validation on a low-field benchtop NMR spectrometer (60 MHz), and present an associated protocol for the analysis of biofluids on compact NMR instruments. We successfully detect common markers of diabetic control at low-to-medium concentrations through optimised experiments, including α-glucose (≤2.8 mmol/L) and acetone (25 µmol/L), and additionally in readily accessible biofluids, particularly human urine. We present a combined protocol for the analysis of these biofluids with low-field NMR spectrometers for metabolomics applications, and offer a perspective on the future of this technique appealing to 'point-of-care' applications.

Keywords: benchtop 60 MHz NMR analysis; biomarkers; biomolecules; diabetes; metabolomics; protocol; validation.

Conflict of interest statement

F. Casanova is employed by Magritek GmbH.

Figures

Figure 1
Figure 1
1H nuclear magnetic resonance (NMR) type 2 diabetic urinary profile acquired on a 60 MHz benchtop instrument, highlighting a clearly distinguishable β-Glucose-C1-H resonance (d, ∂ = 4.65 ppm), in addition to the α-Glucose-C1-H one located at ∂ = 5.25 ppm (d), and all further bulk glucose ring structure protons within the 3.19–3.95 ppm chemical shift range for both anomers. Moreover, resonances arsing from a range of further metabolites such as hippurate-CH, indoxyl sulphate-CH, urea-NH2, Cn-CH3/-CH2, creatine-CH3/-CH2, citrate-CH2 (A/B coupling pattern), glutamine-CH2, acetoin-CH3, acetate-CH3, lactate-CH3, N-acetyl storage compound-NHCOCH3, alanine-CH3, isoleucine-CH3 and leucine-CH3 are also visible in this spectrum. Chemical shifts were referenced to internal tetra-deuterated trimethylsilylpropanoate (TSP) (∂ = 0.00 ppm). Abbreviations: 3-d-HB, 3-d-hydroxybutyrate-CH3.
Figure 2
Figure 2
Calibration curve plot of the α-Glucose:TSP (δ = 5.25:0.00 ppm) resonance integral ratio vs. total glucose concentration in phosphate-buffered aqueous solutions (pH 7.00) containing ca. 10% (v/v) 2H2O (red plot). Glucose concentrations ranged from 10.0–600.0 mmol/L, and that of the TSP internal standard was maintained at a final concentration of 223 µmol/L. The blue plot represents that derived from TSP-normalised integral values predicted directly from the known concentrations of total glucose and TSP present, the relative numbers of 1H nuclei contributing towards their 1H NMR resonances (1 and 9 respectively), and the 36% abundance of the α-glucose anomer (δ = 5.25 ppm signal).
Figure 3
Figure 3
2D 1H-1H COSY NMR diabetic urinary profile acquired on a 60 MHz instrument highlighting connectivities between α-Glucose-C1-H and -C2-H resonances at ∂ = 5.25 ppm (d) and 3.52 ppm (dd), respectively (labelled in red), and correspondingly, those of the β-anomer at δ = 4.65 (d) and 3.23 ppm (dd), respectively (labelled in green. A further 1H-1H COSY connectivity between signals located at δ = 3.06 and 4.08 ppm is also clearly visible.
Figure 4
Figure 4
Plots of mean ± 95% CIs urinary glucose concentrations determined from analysis by low field (LF) 60 MHz benchtop 1H NMR, conventional HF 400 1H MHz NMR, the GOD-PAP spectrophotometric (abbreviated Spectro) and chromophoric dipstick (abbreviated Dipstick) test systems. The wide confidence intervals are predominantly ascribable to the highly statistically significant ‘Between-Participants’ random effect component-of-variance (Pj in Equation (1)), and not analytical reproducibility.
Figure 5
Figure 5
Principal component analysis (PCA) scores plot of PC2 (17.04% of total variance) versus PC1 (64.94% of total variance) for a preliminary investigation of distinctions between healthy control and type 2 diabetic cohorts, and also potential sample outliers. Colour codings: blue, urine samples collected from healthy controls; green, those from type 2 diabetes participants. The black points represent scores plot centroids for the two groups explored. PCA was performed using XLSTAT2014 software, and the dataset was TSP-normalised, generalised logarithmically (glog)-transfomed and Pareto-scaled prior to analysis.
Figure 6
Figure 6
(a) Orthogonal projections to latent structures- discriminatory analysis (OPLS-DA) scores plot of orthogonal T score vs. T score for the TSP-normalised dataset demonstrating a clear metabolomics-based distinction between type 2 diabetic patients and healthy controls. 95% confidence ellipsoids are also shown (the type 2 diabetic patient cluster sample T score values (+2.5 to +6) are all greater than those of the control cohort (−6 to +1)); (b), as (a), but for the constant sum-normalised (CSN) dataset.
Figure 7
Figure 7
(a) Receiver operating characteristic (ROC) curve (plot of true positive vs. false positive rates) with an area under ROC curve (AUROC) value of 0.975 obtained from the support vector machine (SVM) model building system explored with 10 out of a possible 27 variables. ROC curves were developed via Monte Carlo Cross-Validation (MCCV) involving a balanced sub-sampling processes involving application of an SVM model builder (TSP-normalised urinary dataset). The inset shows mean AUROC values estimated for increasing sampling sizes, together with 95% CIs for these values. (b) Probability view arising from a balanced sub-sampling approach for SVM model training (predicted class probabilities for each sample employed the most effective area under ROC curve (AUROC)-based classification system).
Figure 8
Figure 8
Diabetic urinary 1H NMR profile acquired at 60 (red) and 400 MHz (blue) operating frequencies. Assignments: 1, TSP-Si(CH3)3; 2, Citrate-A/B-CH2CO2−; 3, Cn/Creatine > N-CH3; 4, β-Glucose-C2-H; 5, α- and β-Glucose-C4-H/C5-H, and α-Glucose-C2-H; 6, α- and β-Glucose-C3-H/C5-H/C6-H2; 7, Cn-CH2; 8, β-Glucose-C1-H; 9, H2O/HOD-OH; 10, α-Glucose-C1-H.
Figure 9
Figure 9
Proposed schematic representation of biofluid analysis by LF benchtop NMR spectroscopy. Numbers refer to sections of the protocol in Part 5 of this work, relevant to each respective section of the scheme. KEGG: Kyoto Encyclopedia of Gene and Genomics

References

    1. Teng Q. Structural Biology: Practical NMR Applications. Springer; Berlin/Heidelberg, Germany: 2013. NMR-Based Metabolomics.
    1. Shen B., Tang H., Jiang X. Translational Biomedical Informatics. Springer; Berlin/Heidelberg, Germany: 2016.
    1. Wishart D.S. Quantitative metabolomics using NMR. TrAC Trends Anal. Chem. 2008;27:228–237. doi: 10.1016/j.trac.2007.12.001.
    1. Santorio S. De Statica Medicina. Venice: 1614.
    1. Thomson J.J. Bakerian Lecture—Rays of positive electricity. Proc. R. Soc. Lond. A. 1913;89:1–20. doi: 10.1098/rspa.1913.0057.
    1. Purcell E.M., Pound R.V., Bloembergen N. Nuclear magnetic resonance absorption in hydrogen gas. Phys. Rev. 1946;70:986. doi: 10.1103/PhysRev.70.986.
    1. Pauling L., Robinson A.B., Teranishi R., Cary P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proc. Natl. Acad. Sci. USA. 1971;68:2374–2376. doi: 10.1073/pnas.68.10.2374.
    1. Nicholson J.K., Buckingham M.J., Sadler P.J. High resolution 1H N.M.R. studies of vertebrate blood and plasma. Biochem. J. 1983;211:605–615. doi: 10.1042/bj2110605.
    1. Bell J.D., Brown J.C., Nicholson J.K., Sadler P.J. Assignment of resonances for ‘acute-phase’glycoproteins in high resolution proton NMR spectra of human blood plasma. FEBS Lett. 1987;215:311–315. doi: 10.1016/0014-5793(87)80168-0.
    1. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 1987;163:16–20. doi: 10.1016/0003-2697(87)90086-8.
    1. Percival B., Wann A., Masania J., Sinclair J., Sullo N., Grootveld M. Detection and determination of methanol and further potential toxins in human saliva collected from cigarette smokers: A 1H NMR investigation. JSM Biotechnol. Biomed. Eng. 2018;5:1081.
    1. Visentin S., Crotti S., Donazzolo E., D’Aronco S., Nitti D., Cosmi E., Agostini M. Medium chain fatty acids in intrauterine growth restricted and small for gestational age pregnancies. Metabolomics. 2017;13:1–9. doi: 10.1007/s11306-017-1197-8.
    1. Wishart D.S., Feunang Y.D., Marcu A., Guo A.C., Liang K., Vázquez-Fresno R., Sajed T., Johnson D., Li C., Karu N., et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018;4:608–617. doi: 10.1093/nar/gkx1089.
    1. Chong J., Soufan O., Li C., Caraus I., Li S., Bourque G., Wishart D.S., Xia J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;2:486–494. doi: 10.1093/nar/gky310.
    1. Trivedi D.K., Hollywood K.A., Goodacre R. Metabolomics for the masses: The future of metabolomics in a personalized world. New Horiz. Transl. Med. 2017;3:294–305. doi: 10.1016/j.nhtm.2017.06.001.
    1. Blümler P., Casanova F. Mobile NMR and MRI. 2015. Chapter 5. Hardware Developments: Halbach Magnet Arrays; pp. 133–157.
    1. Qiu Y., Rajagopalan D., Connor S.C., Damian D., Zhu L., Handzel A., Hu G., Amanullah A., Bao S., Woody N., et al. Multivariate classification analysis of metabolomic data for candidate biomarker discovery in type 2 diabetes mellitus. Metabolomics. 2008;4:337–346. doi: 10.1007/s11306-008-0123-5.
    1. Weljie A.M., Newton J., Mercier P., Carlson E., Slupsky C.M. Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 2006;78:4430–4442. doi: 10.1021/ac060209g.
    1. Blekherman G., Laubenbacher R., Cortes D.F., Mendes P., Torti F.M., Akman S., Torti S.V., Shulaev V. Bioinformatics tools for cancer metabolomics. Metabolomics. 2011;7:329–343. doi: 10.1007/s11306-010-0270-3.
    1. Beckonert O., Keun H.C., Ebbels T.M.D., Bundy J., Holmes E., Lindon J.C., Nicholson J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007;2:2692–2703. doi: 10.1038/nprot.2007.376.
    1. Blümich B., Casanova F., Dabrowski M., Danieli E., Evertz L., Haber A., Van Landeghem M., Haber-Pohlmeier S., Olaru A., Perlo J., et al. Small-scale instrumentation for nuclear magnetic resonance of porous media. New J. Phys. 2011;13:015003. doi: 10.1088/1367-2630/13/1/015003.
    1. Gouilleux B., Charrier B., Akoka S., Giraudeau P. Gradient-based solvent suppression methods on a benchtop spectrometer. Magn. Reson. Chem. 2017;55:91–98. doi: 10.1002/mrc.4493.
    1. Danieli E., Perlo J., Blümich B., Casanova F. Small magnets for portable NMR spectrometers. Angew. Chem. Int. Ed. 2010;49:4133–4135. doi: 10.1002/anie.201000221.
    1. Schaeler K., Roos M., Micke P., Golitsyn Y., Seidlitz A., Thurn-Albrecht T., Schneider H., Hempel G., Saalwaechter K. Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast. Solid State Nucl. Magn. Reson. 2015;72:50–63. doi: 10.1016/j.ssnmr.2015.09.001.
    1. Singh K., Blümich B. Desktop NMR for structure elucidation and identification of strychnine adulteration. Analyst. 2017;142:1459–1470. doi: 10.1039/C7AN00020K.
    1. Masania J., Grootveld M., Wilson P.B. Teaching analytical chemistry to pharmacy students: A combined, iterative approach. J. Chem. Educ. 2017;95:47–54. doi: 10.1021/acs.jchemed.7b00495.
    1. Chang W.H., Chen J.H., Hwang L.P. Single-sided mobile NMR with a Halbach magnet. Magn. Reson. Imaging. 2006;24:1095–1102. doi: 10.1016/j.mri.2006.04.005.
    1. Mickiewicz B., Vogel H.J., Wong H.R., Winston B.W. Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am. J. Respir. Crit. Care Med. 2013;187:967–976. doi: 10.1164/rccm.201209-1726OC.
    1. Armbruster D.A., Pry T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. 2008;29:49–52.
    1. Garcia-Perez I., Posma J.M., Gibson R., Chambers E.S., Hansen T.H., Vestergaard H., Hansen T., Beckmann M., Pedersen O., Elliott P., et al. Objective assessment of dietary patterns by use of metabolic phenotyping: A randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 2017;5:184–195. doi: 10.1016/S2213-8587(16)30419-3.
    1. Lauridsen M., Hansen S.H., Jaroszewski J.W., Cornett C. Human urine as test material in 1H NMR-based metabonomics: Recommendations for sample preparation and storage. Anal. Chem. 2007;79:1181–1186. doi: 10.1021/ac061354x.
    1. Grootveld M., Silwood C.J.L. 1H NMR analysis as a diagnostic probe for human saliva. Biochem. Biophys. Res. Commun. 2005;329:1–5. doi: 10.1016/j.bbrc.2005.01.112.
    1. Yin P., Lehmann R., Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal. Bioanal. Chem. 2015;407:4879–4892. doi: 10.1007/s00216-015-8565-x.
    1. Cui Q., Lewis I.A., Hegeman A.D., Anderson M.E., Li J., Schulte C.F., Westler W.M., Eghbalnia H.R., Sussman M.R., Markley J.L. Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 2008;26:162–164. doi: 10.1038/nbt0208-162.
    1. Robinette S.L., Zhang F., Brüschweiler-Li L., Brüschweiler R. Web server based complex mixture analysis by NMR. Anal. Chem. 2008;80:3606–3611. doi: 10.1021/ac702530t.
    1. Dashti H., Westler W.M., Tonelli M., Wedell J.R., Markley J.L., Eghbalnia H.R. Spin system modeling of Nuclear Magnetic Resonance spectra for applications in metabolomics and small molecule screening. Anal. Chem. 2017;89:12201–12208. doi: 10.1021/acs.analchem.7b02884.
    1. Dashti H., Wedell J.R., Westler W.M., Tonelli M., Aceti D., Amarasinghe G.K., Markley J.L., Eghbalnia H.R. Applications of parametrized NMR spin systems of small molecules. Anal. Chem. 2018;90:10646–10649. doi: 10.1021/acs.analchem.8b02660.
    1. Lamanna R. Proton NMR profiling of food samples. Annu. Rep. NMR Spectrosc. 2013;80:239–291. doi: 10.1016/B978-0-12-408097-3.00004-4.
    1. Worley B., Halouska S., Powers R. Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal. Biochem. 2013;433:102–104. doi: 10.1016/j.ab.2012.10.011.
    1. Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36. doi: 10.1148/radiology.143.1.7063747.
    1. Bouatra S., Aziat F., Mandal R., Guo A.C., Wilson M.R., Knox C., Bjorndahl T.C., Krishnamurthy R., Saleem F., Liu P., et al. The human urine metabolome. PLoS ONE. 2013;8:e73076. doi: 10.1371/journal.pone.0073076.
    1. Lentner C. Geigy Scientific Tables. Ciba-Geigy; Basel, Switzerland: 1981. CIBA-GEIGY Limited.
    1. Putman D.F. Composition and Concentrative Properties of Human Urine. National Aeronautics and Space Administration; Washington, DC, USA: 1971. NASA Contractor Report.
    1. Guy P.A., Tavazzi I., Bruce S.J., Ramadan Z., Kochhar S. Global metabolic profiling analysis on human urine by UPLC–TOFMS: Issues and method validation in nutritional metabolomics. J. Chromatogr. B. 2008;871:253–260. doi: 10.1016/j.jchromb.2008.04.034.
    1. Shaykhutdinov R.A., MacInnis G.D., Dowlatabadi R., Weljie A.M., Vogel H.J. Quantitative analysis of metabolite concentrations in human urine samples using 13C{1H} NMR spectroscopy. Metabolomics. 2009;5:307–317. doi: 10.1007/s11306-009-0155-5.
    1. Shoemaker J.D., Elliott W.H. Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J. Chromatogr. 1991;562:125–138. doi: 10.1016/0378-4347(91)80571-S.
    1. Nicholson J.K., O’Flynn M.P., Sadler P.J., Macleod A.F., Juul S.M., Sönksen P.H. Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem. J. 1984;217:365–375. doi: 10.1042/bj2170365.
    1. Hoppel C.L., Genuth S.M. Urinary excretion of acetylcarnitine during human diabetic and fasting ketosis. Am. J. Physiol. Metab. 1982;243:168–172. doi: 10.1152/ajpendo.1982.243.2.E168.
    1. Ştefan L.I., Nicolescu A., Popa S., Mota M., Kovacs E., Deleanu C. 1H-NMR URINE metabolic profiling in type 1 diabetes mellitus. Rev. Roum. Chim. 2010;55:1033–1037.
    1. Gupta N., Nambam B., Weinstein D.A., Shoemaker L.R. Late diagnosis of Fanconi-Bickel syndrome. J. Inborn Errors Metab. Screen. 2016;4 doi: 10.1177/2326409816679430.
    1. Cistola D.P., Robinson M.D. Compact NMR relaxometry of human blood and blood components. TrAC Trends Anal. Chem. 2016;83:53–64. doi: 10.1016/j.trac.2016.04.020.
    1. Salek R.M., Maguire M.L., Bentley E., Rubtsov D.V., Hough T., Cheeseman M., Nunez D., Sweatman B.C., Haselden J.N., Cox R.D., et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genom. 2007;29:99–108. doi: 10.1152/physiolgenomics.00194.2006.
    1. Nguyen B.D., Meng X., Donovan K.J., Shaka A.J. SOGGY: solvent-optimised double gradient spectroscopy for water suppression. A comparison with some existing techniques. J Magn Reson. 2007;184:263–274. doi: 10.1016/j.jmr.2006.10.014.
    1. Mo H., Raftery D.J. Improved residual water suppression: WET180. Biomol. NMR. 2008;41:105. doi: 10.1007/s10858-008-9246-2.

Source: PubMed

3
S'abonner