Correlations between bone turnover markers, serum magnesium and bone mass density in postmenopausal osteoporosis

Ovidiu Alexandru Mederle, Melania Balas, Sorin Dumitru Ioanoviciu, Camelia-Vidita Gurban, Anca Tudor, Claudia Borza, Ovidiu Alexandru Mederle, Melania Balas, Sorin Dumitru Ioanoviciu, Camelia-Vidita Gurban, Anca Tudor, Claudia Borza

Abstract

Introduction: Bone mass density (BMD) is still the gold standard for the diagnosis of osteoporosis, but bone turnover markers (BTMs) can provide helpful information regarding the bone remodeling process. The aim of this study was to determine the correlations between BMD and serum levels of BTMs (tartrate-resistant acid phosphatase-5b [TRAP-5b]), bone-specific alkaline phosphatase (BSAP), estradiol (E2), and magnesium (Mg[2+]) ion concentrations in postmenopausal osteoporotic women as compared to healthy postmenopausal subjects.

Materials and methods: The study included 132 women with postmenopausal osteoporosis and 81 healthy postmenopausal women without osteoporosis. Dual-energy X-ray absorptiometry scan assessed BMD at different skeleton sites. Serum levels of E2, BSAP, and TRAP-5b were measured by enzyme linked immunosorbent assay. Serum levels of Mg(2+) were determined using the colorimetric spectrometry technique.

Results: Serum levels of BTMs were significantly higher in osteoporotic women than in controls. BSAP has a moderate sensitivity (76.5%) and specificity (84.3%) (cutoff point 21.27 U/L). At a cutoff point of 3.45 U/L, TRAP-5b presented a sensitivity of 86.3% and a higher specificity of 90.6%. Osteoporotic patients showed significantly lower concentrations of serum Mg(2+) than the control group. Mg(2+) levels correlated positively with BMD values (r=0.747, P<0.0001). Furthermore, Mg(2+) concentrations correlated positively with E2 levels (r=0.684, P<0.0001). Spine BMD correlated negatively with BSAP levels (r=-0.36, P<0.0001).

Conclusion: Our study showed that BMD correlates negatively with BTMs and positively with E2 and Mg(2+) levels. TRAP-5b presents a good specificity in identifying patients with postmenopausal osteoporosis.

Keywords: bone mass density; bone-specific alkaline phosphatase; tartrate-resistant acid phosphatase-5b.

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
The correlation between BMD values (g/cm2) and Mg(2+) levels in the whole study group. Abbreviation: BMD, bone mass density.
Figure 2
Figure 2
Receiver-operating characteristic curve of the BSAP, the difference between the patients with osteoporosis and healthy women. Abbreviation: BSAP, bone-specific alkaline phosphatase.
Figure 3
Figure 3
Receiver-operating characteristic curve of the TRAP-5b, the difference between the patients with osteoporosis and healthy women. Abbreviation: TRAP-5b, tartrate-resistant acid phosphatase-5b.

References

    1. Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6:121–145.
    1. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746.
    1. Ji M-X, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med. 2015;1(1):9–13.
    1. Khosla S, Melton JL, Riggs LB. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res. 2011;26(3):441–451.
    1. Okman-Kilic T. Estrogen deficiency and osteoporosis. In: Dionyssiotis Y, editor. Advances in Osteoporosis. (Chap. 2) London: Intech Open Limited; 2015. pp. 7–18.
    1. Gurban CV, Balas M, Zosin I, et al. Evaluation of osteoblastic/osteoclastic activity in postmenopausal osteoporosis. Rom Rev Lab Med. 2012;20(2/4):143–150.
    1. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–397.
    1. Silverman SL, Calderon AD. The utility and limitations of FRAX: a US perspective. Curr Osteoporos Rep. 2010;8(4):192–197.
    1. Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201.
    1. Hlaing TT, Compston JE. Biochemical markers of bone turnover – uses and limitations. Ann Clin Biochem. 2014;51(Pt 2):189–202.
    1. Sornay-Rendu E, Duboeuf F, Boutroy S, Chapurlat RD. How to predict fragility fracture beyond 10 years? The OFELY Study. J Clin Endocrinol Metab. 2014;99(12):4690–4697.
    1. Tamaki J, Iki M, Kadowaki E, et al. Biochemical markers for bone turnover predict risk of vertebral fractures in postmenopausal women over 10 years: the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int. 2013;24(3):887–897.
    1. Johansson H, Odén A, Kanis JA, et al. A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int. 2014;94(5):560–567.
    1. Shinozaki T, Saito K, Kobayashi T, Yanagawa T, Takagishi K. Tartrate-resistant acid phosphatase 5b is a useful serum marker for diagnosis and recurrence detection of giant cell tumor of bone. Open Orthop J. 2012;6:392–399.
    1. Kuo T-R, Chen C-H. Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res. 2017;5:18.
    1. Alghadir AH, Gabr SA, Al-Eisa ES, Alghadir MH. Correlation between bone mineral density and serum trace elements in response to supervised aerobic training in older adults. Clin Interv Aging. 2016;11:265–273.
    1. Castiglioni S, Cazzaniga A, Albisetti W, Maier JAM. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients. 2013;5(8):3022–3033.
    1. Orchard TS, Larson JC, Alghothani N, et al. Magnesium intake, bone mineral density, and fractures: results from the women’s Health Initiative Observational Study. Am J Clin Nutr. 2014;99(4):926–933.
    1. Okyay E, Ertugrul C, Acar B, Sisman AR, Onvural B, Ozaksoy D. Comparative evaluation of serum levels of main minerals and postmenopausal osteoporosis. Maturitas. 2013;76(4):320–325.
    1. Zheng J, Mao X, Ling J, He Q, Quan J, Jiang H. Association between serum level of magnesium and postmenopausal osteoporosis: a meta-analysis. Biol Trace Elem Res. 2014;159(1–3):8–14.
    1. Shetty S, Kapoor N, Dian Bondu J, Thomas N, Paul TV. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab. 2016;20(6):846–852.
    1. Vasikaran S, Eastell R, Bruyere O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22(2):391–420.
    1. Biver E, Chopin F, Coiffier G, et al. Bone turnover markers for osteo-porotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Joint Bone Spine. 2012;79(1):20–25.
    1. Cavalier E, Bergmann P, Bruyère O, et al. The role of biochemical of bone turnover markers in osteoporosis and metabolic bone disease: a consensus paper of the Belgian Bone Club. Osteoporos Int. 2016;27(7):2181–2195.
    1. Szulc P. The role of bone turnover markers in monitoring treatment in postmenopausal osteoporosis. Clin Biochem. 2012;45(12):907–919.
    1. Henriksen K, Leeming DJ, Christiansen C, Karsdal MA. Use of bone turnover markers in clinical osteoporosis assessment in women: current issues and future options. Womens Health (Lond) 2011;7(6):689–698.
    1. Lenora J. Prediction of bone loss in elderly women using bone turnover markers. Galle Med J. 2015;20(1):23–29.
    1. Pardhe BD, Pathak S, Bhetwal A, et al. Effect of age and estrogen on biochemical markers of bone turnover in postmenopausal women: a population-based study from Nepal. Int J Womens Health. 2017;9:781–788.
    1. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26(4):97–122.
    1. Gurban C, Gotia L, Radulov I, et al. Correlations between the markers of bone remodeling and bone mineral density in postmenopausal osteoporosis. Acta Endocrinol (Buc) VI(1):27–44. 2010.
    1. Civitelli R, Armamento-Villareal R, Napoli N. Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int. 2009;20(6):843–851.
    1. Michelsen J, Wallaschofski H, Friedrich N, et al. Reference intervals for serum concentrations of three bone turnover markers for men and women. Bone. 2013;57(2):399–404.
    1. Guañabens N, Filella X, Monegal A, et al. Reference intervals for bone turnover markers in Spanish premenopausal women. Clin Chem Lab Med. 2016;54(2):293–303.
    1. Helleen JM, Ylipahkala H, Alatalo SL, et al. Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int. 2002;71(1):20–25.
    1. Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017;5(11):908–923.
    1. Ivaska KK, Gerdhem P, Väänänen HK, Akesson K, Obrant KJ. Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res. 2010;25(2):393–403.
    1. Irie S, Hayashida N, Shinkawa T, et al. Suitability of tartrate-resistant acid phosphatase type 5b as a screening marker for bone mineral density in community-dwelling elderly individuals. Tohoku J Exp Med. 2011;224(2):105–110.
    1. Odabasi E, Turan M, Aydin A. Magnesium, calcium, zinc, copper, manganese, and selenium levels in postmenopausal women with osteoporosis. Can magnesium and calcium play a key role in osteoporosis. Ann Acad Med Singapore. 2008;37(7):564–569.

Source: PubMed

3
S'abonner