Inflammatory responses and inflammation-associated diseases in organs

Linlin Chen, Huidan Deng, Hengmin Cui, Jing Fang, Zhicai Zuo, Junliang Deng, Yinglun Li, Xun Wang, Ling Zhao, Linlin Chen, Huidan Deng, Hengmin Cui, Jing Fang, Zhicai Zuo, Junliang Deng, Yinglun Li, Xun Wang, Ling Zhao

Abstract

Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.

Keywords: chemokines; cytokines; inflammation; inflammatory signaling pathways; organ diseases.

Conflict of interest statement

CONFLICTS OF INTEREST There are no conflicts of interest.

Figures

Figure 1. TLR signaling
Figure 1. TLR signaling
MyD88-dependent and TRIF-dependent pathways are shown. Signaling through TLRs activates intracellular signaling cascades that lead to nuclear translocation of AP-1 and NF-κB or IRF3, which regulates the inflammatory response.
Figure 2. NF-κB pathway
Figure 2. NF-κB pathway
This pathway is triggered by TLRs and inflammatory cytokines, such as TNF and IL-1, leading to activation of RelA/p50 complexes that regulate expression of inflammatory cytokines. NF-κB signaling requires IKK subunits. which regulate pathway activation through IκB phosphorylation.
Figure 3. MAPK pathway
Figure 3. MAPK pathway
This pathway mediates intracellular signaling initiated by extracellular stimuli, such as stress and cytokines. MAPKKKs phosphorylate and activate MAPKKs, which in turn phosphorylate and activate MAPKs. The mammalian MAPK family includes Erk1/2, JNK, and p38. In the Erk1/2 pathway, Erk1/2 is activated by MKK1/2, which is activated by Raf. In the JNK pathway, JNK is activated by MKK4/7, which is activated by MEKK1/4, ASK1, and MLK3. In the p38 pathway, p38 is activated by MKK3/6, which is activated by MLK3, TAK, and DLK. Activated MAPKs phosphorylate various proteins, including transcription factors, resulting in regulation of inflammatory responses.
Figure 4. JAK-STAT pathway
Figure 4. JAK-STAT pathway
Following IL-6 binding, signal is transduced by a receptor to activate the JAKs, which then activate STATs. STATs are dephosphorylated in the nucleus, leading to activation of downstream cytokines.

References

    1. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140:771–776.
    1. Ferrero-Miliani L, Nielsen O, Andersen P, Girardin S. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol. 2007;147:227–235.
    1. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871–882.
    1. Zhou Y, Hong Y, Huang H. Triptolide Attenuates Inflammatory Response in Membranous Glomerulo-Nephritis Rat via Downregulation of NF-κB Signaling Pathway. Kidney and Blood Pressure Res. 2016;41:901–910.
    1. Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation. Cell. 2010;140:805–820.
    1. Chertov O, Yang D, Howard O, Oppenheim JJ. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev. 2000;177:68–78.
    1. Jabbour HN, Sales KJ, Catalano RD, Norman JE. Inflammatory pathways in female reproductive health and disease. Reprod. 2009;138:903–919.
    1. Lawrence T. The Nuclear Factor NF-κB Pathway in Inflammation. CSH Perspect Biol. 2009 .
    1. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65:S140–S146.
    1. Brusselle G, Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Annals American Thoracic Society. 2014;11:S322–S328.
    1. Gudkov AV, Komarova EA. p53 and the Carcinogenicity of Chronic Inflammation. CSH Perspect Med. 2016 .
    1. Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4:469–478.
    1. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. P Natl Acad Sci. 2000;97:13766–13771.
    1. Janeway CA, Jr, Medzhitov R. Innate immune recognition. Annu rev of immunol. 2002;20:197–216.
    1. Yamamoto M, Takeda K. Current Views of Toll-Like Receptor Signaling Pathways. Gastroenterol Res Pract. 2010 .
    1. Czerkies M, Kwiatkowska K. Toll-Like Receptors and their Contribution to Innate Immunity: Focus on TLR4 Activation by Lipopolysaccharide. Adv Cell Biol. 2014;4:1–23.
    1. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675–680.
    1. Adib-Conquy M, Cavaillon JM. Stress molecules in sepsis and systemic inflammatory response syndrome. FEBS let. 2007;581:3723–3733.
    1. Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends immunol. 2007;28:429–436.
    1. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. BBA. 2005;1754:253–262.
    1. Hendrayani SF, Al-Harbi B, Al-Ansari MM, Silva G, Aboussekhra A. The inflammatory/cancer-related IL-6/STAT3/NF-κB positive feedback loop includes AUF1 and maintains the active state of breast myofibroblasts. Oncotarget. 2016;7:41974–41985. .
    1. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–869.
    1. Henríquez-Olguín C, Altamirano F, Valladares D, López JR, Allen PD, Jaimovich E. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells. BBA-Mol Basis Disc. 2015;1852:1410–1419.
    1. Girard S, Kadhim H, Roy M, Lavoie K, Brochu ME, Larouche A, Sébire G. Role of perinatal inflammation in cerebral palsy. Pediatr neurol. 2009;40:168–174.
    1. Moynagh PN. The NF-kB pathway. J Cell Sci. 2005;118:4585–4592.
    1. Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-|[kappa]|B signaling module. Oncogene. 2006;25:6706–6716.
    1. Pasparakis M, Luedde T, Schmidt-Supprian M. Dissection of the NF-κB signalling cascade in transgenic and knockout mice. Cell Death Differ. 2006;13:861–872.
    1. Basak S, Kim H, Kearns JD, Tergaonkar V, O’Dea E, Werner SL, Benedict CA, Ware CF, Ghosh G, Verma IM. A fourth IκB protein within the NF-κB signaling module. Cell. 2007;128:369–381.
    1. Kadhim H, Tabarki B, Verellen G, De Prez C, Rona AM, Sebire G. Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology. 2001;56:1278–1284.
    1. Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Gene Dev. 2012;26:203–234.
    1. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2005;1754:253–262.
    1. Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–183.
    1. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. BBA-Mol Basis. 2010;1802:396–405.
    1. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–3290.
    1. Sabio G, Davis RJ. TNF, MAP kinase signalling pathways. Semin in Immunol. 2014;26:237–245.
    1. Raingeaud J, Whitmarsh AJ, Barrett T, Dérijard B, Davis RJ. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biolog. 1996;16:1247–1255.
    1. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, Mcinnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–328.
    1. Walker JG, Smith MD. The Jak-STAT pathway in rheumatoid arthritis. J Rheumatol. 2005;32:1650–1653.
    1. Ivashkiv LB, Hu X. The JAK/STAT pathway in rheumatoid arthritis: pathogenic or protective? Arthritis Rheumatol. 2003;48:2092–2096.
    1. Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Therapeut. 2008;120:172–185.
    1. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol. 2011;12:695–708.
    1. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5:987–995.
    1. Opitz B, Van LV Eitel J, Suttorp N. Innate immune recognition in infectious and noninfectious diseases of the lung. American J Resp Crit Care Med. 2010;181:1294–1309.
    1. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28:219–242.
    1. Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, Rubin SM, Ding J, Simonsick EM, Harris TB. Inflammatory markers and onset of cardiovascular events. Circulation. 2003(108):2317–2322.
    1. Bhowmik A, Seemungal TA, Sapsford RJ, Wedzicha JA. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax. 2000;55:114–120.
    1. Pecoits-Filho R, Heimbürger O, Bárány P, Suliman M, Fehrman-Ekholm I, Lindholm B, Stenvinkel P. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am J Kidney Dis. 2003;41:1212–1218.
    1. Ross AC. Relationship between Inflammatory Markers, Endothelial Activation Markers, and Carotid Intima-Media Thickness in HIV-Infected Patients Receiving Antiretroviral Therapy. Cli Infect Dis. 2009;49:1119–1127.
    1. Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, Curhan GC, Rifai N, Cannuscio CC, Stampfer MJ. Inflammatory markers and the risk of coronary heart disease in men and women. New Engl J Med. 2004;351:2599–2610.
    1. Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 2005;19:149–154.
    1. Carrero JJ, Yilmaz MI, Lindholm B, Stenvinkel P. Cytokine Dysregulation in Chronic Kidney Disease: How Can We Treat It? Blood Purificat. 2008;26:291–299.
    1. Machowska A, Carrero JJ, Lindholm B, Stenvinkel P. Therapeutics targeting persistent inflammation in chronic kidney disease. Translat Res J La Clin Med. 2016;167:204–213.
    1. Goldstein BI, Kemp DE, Soczynska JK, Mcintyre RS. Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: a systematic review of the literature. J Clin Psych. 2009;70:1078–1090.
    1. Miller AH, Maletic V, Raison CL. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol Psych. 2009;65:732–741.
    1. Lindahl B, Toss H, Siegbahn A, Venge P, Wallentin L. Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease. New Engl J Med. 2000;343:1139–1147.
    1. Shlipak MG, Fried LF, Crump C, Bleyer AJ, Manolio TA, Tracy RP, Furberg CD, Psaty BM. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation. 2003;107:87–92.
    1. Gupta J, Mitra N, Kanetsky PA, Devaney J, Wing MR, Reilly M, Shah VO, Balakrishnan VS, Guzman NJ, Girndt M. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrolog Cjasn. 2012;7:1938–1946.
    1. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. BBA-Mol Cell Res.2014; 1843:2563–2582.
    1. Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenter. 2014;20:2515–2532.
    1. Liu Z, Wang Y, Wang Y, Ning Q, Zhang Y, Gong C, Zhao W, Jing G, Wang Q. Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway. Int Immunopharmacol. 2016;35:210–216.
    1. Eckersall PD, Bell R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet J. 2010;185:23–27.
    1. Murata H, Shimada N, Yoshioka M. Current research on acute phase proteins in veterinary diagnosis: an overview. Vet J. 2004;168:28–40.
    1. Murakami A, Ohigashi H. Targeting NOX, INOS, COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 2007;121:2357–2363.
    1. Lopresti AL, Maker GL, Hood SD, Drummond PD. A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog neuro-psychoph. 2014;48:102–111.
    1. Huang W, Tang Y, Li L. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine. 2010;51:119–126.
    1. Schierbeck H, Lundbäck P, Palmblad K, Klevenvall L, Erlandssonharris H, Andersson U, Ottosson L. Monoclonal anti-HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models. Mol Med. 2011;17:1039–1044.
    1. Cheng Y, Wang D, Wang B, Li H, Xiong J, Xu S, Chen Q, Tao K, Yang X, Zhu Y. HMGB1 translocation and release mediate cigarette smoke–induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway. Mol Biol Cell. 2017;28:201–209.
    1. Asavarut P, Zhao H, Gu J, Ma D. The role of HMGB1 in inflammation-mediated organ injury. Acta Anaesthesiol Taiwanica. 2013;51:28–33.
    1. Park J, Min JS, Kim B, Chae UB, Yun JW, Choi MS, Kong IK, Chang KT, Lee DS. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK, NF-κB pathways. Neurosci Lett. 2015;584:191–196.
    1. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biol Med. 2010;49:1603–1616.
    1. Stramer BM, Mori R, Martin P. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Invest Dermatol. 2007;127:1009–1017.
    1. Van LS Miteva K, Tschöpe C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res. 2014;102:258–269.
    1. Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. 2016;38:425–448.
    1. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6:173–182.
    1. Fujiwara N, Kobayashi K. Macrophages in inflammation. Current Drug Targets Inflam Allergy. 2005;4:281–286.
    1. Huang C, Šali A, Stevens RL. Regulation and Function of Mast Cell Proteases in Inflammation. J Clin Immunol. 1998;18:169–183.
    1. Aggrey AA, Srivastava K, Ture S, Field DJ, Morrell CN. Platelet induction of the acute-phase response is protective in murine experimental cerebral malaria. J Immunol. 2013;190:4685–4691.
    1. Headland SE, Norling LV. The resolution of inflammation: Principles and challenges. Semin Immunol. 2015;27:149–160.
    1. Reville K, Crean JK, Vivers S, Dransfield I, Godson C. Lipoxin A4 redistributes myosin IIA, Cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes. Jof Immunol. 2006;176:1878–1888.
    1. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6:1191–1197.
    1. Lintermans LL, Stegeman CA, Heeringa P, Abdulahad WH. T cells in vascular inflammatory diseases. Front Immunol. 2014;5:504.
    1. Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immuno. 2016 .
    1. He G, Karin M. NF-κB, STAT3 - key players in liver inflammation and cancer. Cell Res. 2011;21:159–168.
    1. Sofi F, Fabbri A, Casini A. Mediterranean Diet. Springer International publishing; 2016. Inflammation and Cardiovascular Disease and Protection by the Mediterranean Diet; pp. 89–96.
    1. Khan N, Khymenets O, Urpísardà M, Tulipani S, Garciaaloy M, Monagas M, Moracubillos X, Llorach R, Andreslacueva C. Cocoa Polyphenols and Inflammatory Markers of Cardiovascular Disease. Nutrients. 2014;6:844–880.
    1. Lloydjones D, Adams RJ, Brown TM, Carnethon M, Dai S, Simone GD, Ferguson TB, Ford E, Furie K, Gillespie C. Heart Disease and Stroke Statistics—2010 Update A Report From the American Heart Association. Circulation. 2010;115:e25–e146.
    1. Mathers CD, Loncar D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. Plos Med. 2006;3:e442.
    1. Packard RRS, Peter L. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54:24–38.
    1. Libby P. History of Discovery: Inflammation in Atherosclerosis. Arteriosclerosis Thrombosis Vascular Biology. 2012;32:2045–2051.
    1. Libby P. Atherosclerosis in Inflammation. Nature. 2002;420:868–874.
    1. Libby P, Okamoto Y, Rocha VZ, Folco E. Inflammation in atherosclerosis: transition from theory to practice. Circulation J. 2010;74:213–220.
    1. Glezeva N, Baugh JA. Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Fail Rev. 2014;19:681–694.
    1. Askevold ET, Gullestad L, Dahl CP, Yndestad A, Ueland T, Aukrust P. Interleukin-6 signaling, soluble glycoprotein 130, and inflammation in heart failure. Curr Heart Fail Reports. 2014;11:146–155.
    1. Jennings RB, Murry CE, Steenbergen C, Jr, Reimer KA. Development of cell injury in sustained acute ischemia. Circulation. 1990;82:II2–12.
    1. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–1172.
    1. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367:356–367.
    1. Frangogiannis NG. The immune system and cardiac repair. Pharmacol Res. 2008;58:88–111.
    1. Beg AA. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol. 2002;23:509–512.
    1. Frantz S, Ertl G, Bauersachs J. Mechanisms of Disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Card. 2007;4:444–454.
    1. Nijmeijer R, Lagrand WK, Visser CA, Meijer CJ, Niessen HW, Hack CE. CRP, a major culprit in complement-mediated tissue damage in acute myocardial infarction? Int Immunopharmacol. 2001;1:403–414.
    1. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115:500–508.
    1. Griendling KK, Fitzgerald GA. Oxidative Stress and Cardiovascular Injury: Part I: Basic Mechanisms and In Vivo Monitoring of ROS. Circulation. 2003;108:1912–1916.
    1. Hall G, Hasday JD, Rogers TB. Regulating the regulator: NF-κB signaling in heart. J Mol Cell Cardiol. 2006;41:580–591.
    1. Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol. 2001;2:108–115.
    1. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001;2:123–128.
    1. Kaur K, Dhingra S, Slezak J, Sharma AK, Bajaj A, Singal PK. Biology of TNFα and IL-10, and their imbalance in heart failure. Heart Fail Rev. 2009;14:113–123.
    1. Frangogiannis NG. Targeting the transforming growth factor (TGF)-β cascade in the remodeling heart: Benefits and perils. J Mol Cell Cardiol. 2014;76:169–171.
    1. Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006;368:29–36.
    1. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus - Mechanisms, Management, and Clinical Considerations. Circulation. 2016;133:2459–2502.
    1. Turner MD. The identification of TNFR5 as a therapeutic target in diabetes. Taylor Francis. 2017;21:349–351.
    1. Pradeep T, Haranath C. A Review on Diabetes Mellitus Type II. Int J Pharma Res Rev. 2014;3:23–29.
    1. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY. Interleukin-1–receptor antagonist in type 2 diabetes mellitus. New Engl J Med. 2007;356:1517–1526.
    1. Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA. Islet inflammation in type 2 diabetes. Diabetes care. 2008;31:S161–S164.
    1. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pr. 2014;105:141–150.
    1. Dinarello CA, Donath MY, Mandrup-Poulsen T. Role of IL-1β in type 2 diabetes. Curr Opin Endocrinol. 2010;17:314–321.
    1. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.
    1. Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra A. Pathogenic mechanisms of pancreatitis. World J Gastr Pharmacol Therapeut. 2017;8:10–25.
    1. Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1252–1261.
    1. Zheng L, Xue J, Jaffee EM, Habtezion A. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology. 2013;144:1230–1240.
    1. Zhang H, Neuhöfer P, Song L, Rabe B, Lesina M, Kurkowski MU, Treiber M, Wartmann T, Regnér S, Thorlacius H. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest. 2013;123:1019–1031.
    1. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.
    1. Ling S, Feng T, Jia K, Tian YU, Yan LI. Inflammation to cancer: The molecular biology in the pancreas (Review) Oncol Lett. 2014;7:1747–1754.
    1. Inflammation Whitcomb DC., Cancer V. Chronic pancreatitis and pancreatic cancer. Am J Physiol-Gastr L. 2004;287:G315–G319.
    1. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–1057.
    1. Goggins M, Hruban RH, Kern SE. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J pathoL. 2000;156:1767–1771.
    1. Shi Q, Le X Wang B, Abbruzzese JL, Xiong Q, He Y, Xie K. Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene. 2001;20:3751–3756.
    1. Xie K. Interleukin-8 and human cancer biology. Cytokine Growth F R. 2001;12:375–391.
    1. Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59:583–594.
    1. Leitão HS, Doblas S, Garteiser P, D’Assignies G, Paradis V, Mouri F, Geraldes CF, Ronot M, Van Beers BE. Hepatic Fibrosis, Inflammation, and Steatosis: Influence on the MR Viscoelastic and Diffusion Parameters in Patients with Chronic Liver Disease. Radiology. 2016;283:98–1107.
    1. Ramadori G, Moriconi F, Malik I, Dudas J. Physiology and pathophysiology of liver inflammation, damage and repair. J Physiol Pharmacol. 2008;59:107–117.
    1. Pawlotsky JM. Pathophysiology of hepatitis C virus infection and related liver disease. Trends in Microbiol. 2004;12:96–102.
    1. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, Das A, Lopes AR, Borrow P, Williams K, Humphreys E, Afford S, Adams DH, et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell–mediated liver damage. J Exp Med. 2007;204:667–680.
    1. Gao B, Seki E, Brenner DA, Friedman S, Cohen JI, Nagy L, Szabo G, Zakhari S. Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2011;300:516–525.
    1. Brenner DA, Seki E, Taura K, Kisseleva T, Deminicis S, Iwaisako K, Inokuchi S, Schnabl B, Oesterreicher CH, Yong HP. Non-alcoholic steatohepatitis-induced fibrosis: Toll-like receptors, reactive oxygen species and Jun N-terminal kinase. Hepatol Res. 2011;41:683–686.
    1. Maher JJ. DAMPs ramp up drug toxicity. J Clin Invest. 2009;119:246–249.
    1. Kubes P, Mehal WZ. Sterile Inflammation in the Liver. Gastroenterology. 2012;143:1158–1172.
    1. Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C. Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. science. 1998;282:2085–2088.
    1. Szabo G, Mandrekar P, Dolganiuc A. Innate immune response and hepatic inflammation. Seminars in Liver Disease. 2007;27:339–350.
    1. Walford HH, Doherty TA. STAT6 and lung inflammation. Jakstat. 2013;2:e25301–e25311.
    1. Leitch AE, Duffin R, Haslett C, Rossi AG. Relevance of granulocyte apoptosis to resolution of inflammation at the respiratory mucosa. Mucosal Immunol. 2008;1:350–363.
    1. Brusselle G, Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Annals of the American Thoracic Society. 2014;11:329–335.
    1. Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J of Copd. 2016;11:1391–1401.
    1. Mroz RM, Noparlik J, Chyczewska E, Braszko JJ, Holownia A. Molecular basis of chronic inflammation in lung diseases: new therapeutic approach. J Physiol Pharmacol. 2007;58:453–460.
    1. Kawayama T, Kinoshita T, Matsunaga K, Kobayashi A, Hayamizu T, Johnson M, Hoshino T. Responsiveness of blood and sputum inflammatory cells in Japanese COPD patients, non-COPD smoking controls, and non-COPD nonsmoking controls. Int J Copd. 2016;11:295–303.
    1. Ernandez T, Mayadas TN. The Changing Landscape of Renal Inflammation. Trends Mol Med. 2016;22:151–163.
    1. Poveda J, Sanz AB, Rayegomateos S, Ruizortega M, Carrasco S, Ortiz A, Sanchezniño MD. NFκBiz protein downregulation in acute kidney injury: Modulation of inflammation and survival in tubular cells. BBA - Mol Basis Dis. 2016;1862:635–646.
    1. Sanz A, Sanchez-Niño M, Ramos A, Moreno J, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. NF-kappaB in renal inflammation. J Am Soc Nephrol. 2010;21:1254–1262.
    1. Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 2012;82:516–524.
    1. Sanchez MIP, Bercik P. Epidemiology and burden of chronic constipation. Can J Gastroenterol. 2011;25:11B–15B.
    1. Hunt R, Quigley E, Abbas Z, Eliakim A, Emmanuel A, Goh KL, Guarner F, Katelaris P, Smout A, Umar M. Coping with common gastrointestinal symptoms in the community: a global perspective on heartburn, constipation, bloating, and abdominal pain/discomfort May 2013. J Clin Gastroenterol. 2014;48:567–578.
    1. Mcguckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis. 2009;15:100–113.
    1. Cario E, Podolsky DK. Differential Alteration in Intestinal Epithelial Cell Expression of Toll-Like Receptor 3 (TLR3) and TLR4 in Inflammatory Bowel Disease. Infection Immunity. 2000;68:7010–7017.
    1. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117:514–521.
    1. Fukata M, Arditi M. The role of pattern recognition receptors in intestinal inflammation. Mucosal Immunol. 2013;6:451–463.
    1. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern Recognition Receptors and the Innate Immune Response to Viral Infection. Viruses. 2011;3:920–940.
    1. Goswami B, Rajappa M, Sharma M, Sharma A. Inflammation: its role and interplay in the development of cancer, with special focus on gynecological malignancies. Int J Gynecol Cancer. 2008;18:591–599.
    1. Levi M, van der Poll T. Two-way interactions between inflammation and coagulation. Trends Cardiovascular Med. 2005;15:254–259.
    1. Sampson MT, Kakkar AK. Coagulation proteases and human cancer. Biochem Soc T. 2002;30:201–207.
    1. Nelson PT, Soma LA, Lavi E. Microglia in diseases of the central nervous system. Annals Med. 2002;34:491–500.
    1. Vezzani A, Granata T. Brain Inflammation in Epilepsy: Experimental and Clinical Evidence. Epilepsia. 2005;46:1724–1743.
    1. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neuro. 2007;8:57–69.
    1. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. P Natl Acad of Sci USA. 2003;100:13632–13637.
    1. Koltsakis GC, Stamatelos AM. Cytokines and acute neurodegeneration. Nat Rev Neuro. 2001;2:734–744.
    1. Jankowsky JL, Patterson PH. The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobio. 2001;63:125–149.

Source: PubMed

3
S'abonner