Role of C-Reactive Protein at Sites of Inflammation and Infection

Nicola R Sproston, Jason J Ashworth, Nicola R Sproston, Jason J Ashworth

Abstract

C-reactive protein (CRP) is an acute inflammatory protein that increases up to 1,000-fold at sites of infection or inflammation. CRP is produced as a homopentameric protein, termed native CRP (nCRP), which can irreversibly dissociate at sites of inflammation and infection into five separate monomers, termed monomeric CRP (mCRP). CRP is synthesized primarily in liver hepatocytes but also by smooth muscle cells, macrophages, endothelial cells, lymphocytes, and adipocytes. Evidence suggests that estrogen in the form of hormone replacement therapy influences CRP levels in the elderly. Having been traditionally utilized as a marker of infection and cardiovascular events, there is now growing evidence that CRP plays important roles in inflammatory processes and host responses to infection including the complement pathway, apoptosis, phagocytosis, nitric oxide (NO) release, and the production of cytokines, particularly interleukin-6 and tumor necrosis factor-α. Unlike more recent publications, the findings of early work on CRP can seem somewhat unclear and at times conflicting since it was often not specified which particular CRP isoform was measured or utilized in experiments and whether responses attributed to nCRP were in fact possibly due to dissociation into mCRP or lipopolysaccharide contamination. In addition, since antibodies for mCRP are not commercially available, few laboratories are able to conduct studies investigating the mCRP isoform. Despite these issues and the fact that most CRP research to date has focused on vascular disorders, there is mounting evidence that CRP isoforms have distinct biological properties, with nCRP often exhibiting more anti-inflammatory activities compared to mCRP. The nCRP isoform activates the classical complement pathway, induces phagocytosis, and promotes apoptosis. On the other hand, mCRP promotes the chemotaxis and recruitment of circulating leukocytes to areas of inflammation and can delay apoptosis. The nCRP and mCRP isoforms work in opposing directions to inhibit and induce NO production, respectively. In terms of pro-inflammatory cytokine production, mCRP increases interleukin-8 and monocyte chemoattractant protein-1 production, whereas nCRP has no detectable effect on their levels. Further studies are needed to expand on these emerging findings and to fully characterize the differential roles that each CRP isoform plays at sites of local inflammation and infection.

Keywords: C-reactive protein; infection; inflammation; monomeric C-reactive protein; native C-reactive protein.

Figures

Figure 1
Figure 1
Summary of studies investigating the role of native C-reactive protein (CRP) and monomeric CRP in inflammation, infection, and disease.

References

    1. Tillet WS, Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of Pneumococcus. J Exp Med (1930) 52(4):561–71.10.1084/jem.52.4.561
    1. Volanakis JE. Human C-reactive protein: expression structure and function. Mol Immunol (2001) 38:189–97.10.1016/S0161-5890(01)00042-6
    1. Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem (2004) 279(47):48487–90.10.1074/jbc.R400025200
    1. Gewurz H, Mold C, Siegel J, Fiedel B. C-reactive protein and the acute phase response. Adv Intern Med (1982) 27:345–72.
    1. Boras E, Slevin M, Alexander MY, Aljohi A, Gilmore W, Ashworth J, et al. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway. Cytokine (2014) 69:165–79.10.1016/j.cyto.2014.05.027
    1. Du Clos TW, Mold C. C-reactive protein: an activator of innate immunity and a modulator of adaptive immunity. Immunol Res (2004) 30(3):261–77.10.1385/IR:30:3:261
    1. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med (1999) 340(6):448–54.10.1056/NEJM199902113400607
    1. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure (1999) 7(2):169–77.10.1016/S0969-2126(99)80023-9
    1. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation (2003) 107:363–9.10.1161/01.CIR.0000053730.47739.3C
    1. Ciubotaru I, Potempa LA, Wander RC. Production of modified C-reactive protein in U937-derived macrophages. Exp Biol Med (2005) 230(10):762–70.10.1177/153537020523001010
    1. Szalai AJ, van Ginkel FW, Dalrymple SA, Murray R, McGhee JR, Volankis JE. Testosterone and IL-6 requirements for human C-reactive protein gene expression in transgenic mice. J Immunol (1998) 160(11):5294–9.
    1. Weinhold B, Bader A, Valeria POLI, Rütehr U. Interleukin-6 is necessary, but not sufficient, for induction of the human C-reactive protein gene in vivo. Biochem J (1997) 325(3):617–21.10.1042/bj3250617
    1. Hage FG, Szalai AJ. C-reactive protein gene polymorphisms, C-reactive protein blood levels and cardiovascular disease risk. J Am Coll Cardiol (2007) 50(12):1115–22.10.1016/j.jacc.2007.06.012
    1. Devaraj S, Venugopal S, Jialal I. Native pentameric C-reactive protein displays more potent pro-atherogenic activities in human aortic endothelial cells than modified C-reactive protein. Atherosclerosis (2006) 184:48–52.10.1016/j.atherosclerosis.2005.03.031
    1. Eisenhardt SU, Thiele JR, Bannasch H, Stark GB, Peter K. C-reactive protein: how conformational changes influence inflammatory properties. Cell Cycle (2009) 8(23):3885–92.10.4161/cc.8.23.10068
    1. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Investig (2003) 111(12):1805–12.10.1172/JCI200318921
    1. Pankow JS, Folsom AR, Cushman M, Borecki IB, Hopkins PN, Eckfeldt JH, et al. Familial and genetic determinants of systemic markers of inflammation: the NHLBI family heart study. Atherosclerosis (2001) 154(3):681–9.10.1016/S0021-9150(00)00586-4
    1. Kurtz EG, Ridker PM, Rose LM, Cook NR, Everett BM, Buring JE, et al. Oral postmenopausal hormone therapy, C-reactive protein and cardiovascular outcomes. Menopause (2011) 18(1):23–9.10.1097/gme.0b013e3181e750dd
    1. Corcoran MP, Meydani M, Lichtenstein AH, Schaefer EJ, Dillard A, Lamon-Fava S. Sex hormone modulation of proinflammatory cytokine and CRP expression in macrophages from older men and postmenopausal women. J Endocrinol (2010) 206(2):217–24.10.1677/JOE-10-0057
    1. Ridker PM, Hennekens CH, Rifai N, Buring JE, Manson JE. Hormone replacement therapy and increased plasma concentration of C-reactive protein. Circulation (1999) 100(7):713–6.10.1161/01.CIR.100.3.230
    1. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med (2000) 342(12):836–43.10.1056/NEJM200003233421202
    1. Decensi A, Omodei U, Robertson C, Bonanni B, Guerrieri-Gonzaga A, Ramazzotto F, et al. Effect of transdermal estradiol and oral conjugated estrogen on C-reactive protein in retinoid-placebo trial in healthy women. Circulation (2002) 106(10):1224–8.10.1161/01.CIR.0000028463.74880.EA
    1. Vongpatanasin W, Tuncel M, Wang Z, Arbique D, Mehrad B, Jialal I. Differential effects of oral versus transdermal estrogen replacement therapy on C-reactive protein in postmenopausal women. J Am Coll Cardiol (2003) 41(8):1358–63.10.1016/S0735-1097(03)00156-6
    1. Casanova G, dos Reis AM, Spritzer PM. Low-dose oral or non-oral hormone therapy: effects on C-reactive protein and atrial natriuretic peptide in menopause. Climacteric (2015) 18(1):86–93.10.3109/13697137.2014.940309
    1. Sattar N, Perera M, Small M, Lumsden MA. Hormone replacement therapy and sensitive C-reactive protein concentrations in women with type-2 diabetes. Lancet (1999) 354:487–8.10.1016/S0140-6736(99)02079-6
    1. Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MW. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol (1999) 155(4):1137–46.10.1016/S0002-9440(10)65217-0
    1. Boncler M, Watala C. Regulation of cell function by isoforms of C-reactive protein: a comparative analysis. Acta Biochim Pol (2009) 56(1):17–31.
    1. Calabró P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation (2003) 108(16):1930–2.10.1161/01.CIR.0000096055.62724.C5
    1. Devaraj S, Singh U, Jialal I. The evolving role of C-reactive protein in atherothrombosis. Clin Chem (2009) 55(2):229–38.10.1373/clinchem.2008.108886
    1. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation (2000) 102(18):2165–8.10.1161/01.CIR.102.18.2165
    1. Calabró P, Chang DW, Willerson JT, Yeh ET. Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: linking obesity to vascular inflammation. J Am Coll Cardiol (2005) 46(6):1112–3.10.1016/j.jacc.2005.06.017
    1. Macintyre S, Samols D, Dailey P. Two carboxylesterases bind C-reactive protein within the endoplasmic reticulum and regulate its secretion during the acute phase response. J Biol Chem (1994) 269(39):24496–503.
    1. Zhang D, Sun M, Samols D, Kushner I. STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. J Biol Chem (1996) 271(16):9503–9.10.1074/jbc.271.16.9503
    1. Potempa LA, Siegel JN, Fedel BA, Potempa RT, Gewurz H. Expression, detection and assay of a neoantigen (Neo-CRP) associated with a free, human C-reactive protein subunit. Mol Immunol (1987) 24(5):531–41.10.1016/0161-5890(87)90028-9
    1. Potempa LA, Maldonado BA, Laurent P, Zemel ES, Gewurz H. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Mol Immunol (1983) 20(11):1165–75.10.1016/0161-5890(83)90140-2
    1. Wu Y, Potempa LA, El Kebir D, Filep JG. C-reactive protein and inflammation: conformational changes affect function. Biol Chem (2015) 396(11):1181–97.10.1515/hsz-2015-0149
    1. Khreiss T, József L, Potempa LA, Filep JG. Opposing effects of C-reactive protein isoforms on shear-induced neutrophil-platelet adhesion and neutrophil aggregation in whole blood. Circulation (2004) 110(17):2713–20.10.1161/01.CIR.0000146846.00816.DD
    1. Du Clos TW. Pentraxins: structure, function and role in inflammation. ISRN Inflamm (2013) 2013:379040.10.1155/2013/379040
    1. Ji SR, Wu J, Zhu L, Potempa LA, Sheng FL, Lu W, et al. Cell membranes and liposomes dissociate C-reactive protein (CRP) to form new, biologically active structural intermediate: mCRPm. FASEB J (2007) 21:284–94.10.1096/fj.06-6722com
    1. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med (2002) 347(20):1557–65.10.1056/NEJMoa021993
    1. Osman R, L’Allier PL, Elgharib N, Tardif JC. Critical appraisal of C-reactive protein throughout the spectrum of cardiovascular disease. Vasc Health Risk Manag (2006) 2(3):221.10.2147/vhrm.2006.2.3.221
    1. Kushner I. C-reactive protein and the acute-phase response. Hosp Pract (Off Ed) (1990) 25(3A):13–6.
    1. Soinio M, Marniemi J, Laakso M, Lehto S, Rönnemaa TT. High sensitivity C-reactive protein and coronary heart disease mortality in type 2 diabetic patients – a 7 year follow up study. Diabetes Care (2006) 29(2):329–33.10.2337/diacare.29.02.06.dc05-1700
    1. Clyne B, Olshaker JS. The C-reactive protein. J Emerg Med (1999) 17(6):1019–25.10.1016/S0736-4679(99)00135-3
    1. Albu E, Miller BM, Choi Y, Lakhanpal S, Murthy RN, Gerst PH. Diagnostic value of C-reactive protein in acute appendicitis. Dis Colon Rectum (1994) 37(1):49–51.10.1007/BF02047214
    1. Juvonen T, Kiviniemi H, Niemelä O, Kairaluoma MI. Diagnositic accuracy of ultrasonography and C reactive protein concentration in acute cholecystitis: a prospective clinical study. Eur J Surg (1991) 158(6–7):365–9.
    1. Wilson C, Heads A, Shenkin A, Imrie CW. C-reactive protein, antiproteases and complement factors as objective markers of severity in acute pancreatitis. Br J Surg (1989) 76(2):177–81.10.1002/bjs.1800760224
    1. Peltola HO. C-reactive protein for rapid monitoring of infections of the central nervous system. Lancet (1982) 319(8279):980–3.10.1016/S0140-6736(82)91989-4
    1. Corrall CJ, Pepple JM, Moxon ER, Hughes WT. C-reactive protein in spinal fluid of children with meningitis. J Pediatr (1981) 99(3):365–9.10.1016/S0022-3476(81)80319-8
    1. Thiele JR, Habersberger J, Braig D, Schmidt Y, Goerendt K, Maurer V, et al. Dissociation of pentameric to monomeric C-reactive protein localises and aggravates inflammation: in vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation (2014) 130:35–50.10.1161/CIRCULATIONAHA.113.007124
    1. Pepys MB, Hirschfield GM, Tennent GA, Gallimore JR, Kahan MC, Bellotti V, et al. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature (2006) 440:1217–21.10.1038/nature04672
    1. Slevin M, Matou S, Zeinolabediny Y, Corpas R, Weston R, Liu D, et al. Monomeric C-reactive protein – a key molecule driving development of Alzheimer’s disease associated with brain ischaemia? Sci Rep (2015) 5:13281.10.1038/srep13281
    1. Verma S, Szmitko PE, Yeh ET. C-reactive protein: structure affects function. Circulation (2004) 109:1914–7.10.1161/01.CIR.0000127085.32999.64
    1. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. J Am Med Assoc (2001) 286(3):327–34.10.1001/jama.286.3.327
    1. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, inetleukin-6 and tumour necrosis factor-α. Mol Psychiatry (2016) 21:642–9.10.1038/mp.2015.67
    1. Du Clos TW. Function of C-reactive protein. Ann Med (2000) 32(4):274–8.10.3109/07853890009011772
    1. Braig D, Nero TL, Koch HG, Kaiser B, Wang X, Thiele JR, et al. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nat Commun (2017) 8:14188.10.1038/ncomms14188
    1. Mihlan M, Blom AM, Kupreishvili K, Launer N, Stelzner K, Bergstro¨m F, et al. Monomeric C-reactive protein modulates classical complement activation on necrotic cells. FASEB J (2011) 25:4198–210.10.1096/fj.11-186460
    1. Kaplan MH, Volanakis JE. Interaction of C-reactive protein complexes with the complement system I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J Immunol (1974) 112(6):2135–47.
    1. Torzewski J, Torzewski M, Bowyer DE, Fröhlich M, Koenig W, Waltenberger J, et al. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler Thromb Vasc Biol (1998) 18(9):1386–92.10.1161/01.ATV.18.9.1386
    1. Lagrand WK, Niessen HW, Wolbink GJ, Jaspars LH, Visser CA, Verheugt FW, et al. C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation (1997) 95(1):97–103.10.1161/01.CIR.95.1.97
    1. Gitlin JD, Gitlin JI, Gitlin D. Localizing of C-reactive protein in synovium of patients with rheumatoid arthritis. Arthritis Rheum (1977) 20(8):1491–9.10.1002/art.1780200808
    1. Vigushin DM, Pepys MB, Hawkins PN. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest (1993) 91:1351–7.10.1172/JCI116336
    1. Du Clos TW, Mold C, Paterson PY, Alroy J, Gewurz H. Localization of C-reactive protein in inflammatory lesions of experimental allergic encephalomyelitis. Clin Exp Immunol (1981) 43:565–73.
    1. Parish WE. Studies on vasculitis. I. Immunoglobulins, 1C, C-reactive protein, and bacterial antigens in cutaneous vasculitis lesions. Clin Allergy (1971) 1:97–109.10.1111/j.1365-2222.1971.tb02451.x
    1. Healy B, Freedman A. Infections. Br Med J (2006) 332(7545):838–41.10.1136/bmj.332.7545.838
    1. Kingsley A, Jones V. Diagnosing wound infection: the use of C-reactive protein. Wounds UK (2008) 4(4):32–46.
    1. Mortensen RF. C-reactive protein, inflammation, and innate immunity. Immunol Res (2001) 24(2):163–76.10.1385/IR:24:2:163
    1. Mold C, Nakayama S, Holzer TJ, Gewurz H, Du Clos TW. C-reactive protein is protective against Streptococcus pneumoniae infection in mice. J Exp Med (1981) 154(5):1703–8.10.1084/jem.154.5.1703
    1. Szalai AJ, VanCott JL, McGhee JR, Volanakis JE, Benjamin WH. Human C-reactive protein is protective against fatal Salmonella enterica serovar typhimurium infection in transgenic mice. Infect Immun (2000) 68(10):5652–6.10.1128/IAI.68.10.5652-5656.2000
    1. Marnell L, Mold C, Du Clos TW. C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol (2005) 117(2):104–11.10.1016/j.clim.2005.08.004
    1. Povoa P, Coelho L, Almeida E, Fernandes A, Mealha R, Moreira P, et al. C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect (2005) 11(2):101–8.10.1111/j.1469-0691.2004.01044.x
    1. Patterson LT, Mora EC. The C-reactive protein response and disease resistance in the domestic fowl. Tex Rep Biol Med (1965) 23:600–6.
    1. Mulholland JH, Cluff LE. The effect of endotoxin upon susceptibility to infection. The role of the granulocyte. In: Landy M, Braun W, editors. Bacterial Endotoxins. New Brunswick, NJ: Rutgers University Press; (1964). p. 211–29.
    1. Patterson L, Harper J, Higginbotham R. Association of C-reactive protein and circulating leukocytes with resistance to Staphylococcus aureus infection in endotoxin-treated mice and rabbits. J Bacteriol (1968) 95:1375–82.
    1. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol (2007) 25(1):9–18.10.1016/j.clindermatol.2006.09.007
    1. Trial J, Potempa LA, Entman ML. The role of C-reactive protein in innate and acquired inflammation: new perspectives. Inflamm Cell Signal (2016) 3(2):e1409.
    1. Agrawal A, Shrive AK, Greenhough TJ, Volankis JE. Topology and structure of the C1q-binding site on C-reactive protein. J Immunol (2001) 166(6):3998–4004.10.4049/jimmunol.166.6.3998
    1. Paul WE. Fundamental Immunology. 6th ed Philadelphia: Lippincott Williams and Wilkins; (2008).
    1. Mold C, Gewurz H, Du Clos TW. Regulation of complement activation by C-reactive protein. Immunopharmacology (1999) 42:23–30.10.1016/S0162-3109(99)00007-7
    1. Devaraj S, Du Clos TW, Jialal I. Binding and internalization of C-reactive protein by Fcgamma receptors on human aortic endothelial cells mediates biological effects. Arterioscler Thromb Vasc Biol (2005) 26:1359–63.10.1161/
    1. Kobayashi S, Inoue N, Ohashi Y, Terashima M, Matsui K, Mori T, et al. Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler Thromb Vasc Biol (2003) 23:1398–404.10.1161/01.ATV.0000081637.36475.BC
    1. Ryu J, Lee CW, Shin JA, Park CS, Kim JJ, Park SJ, et al. FcγRIIa mediates C-reactive protein-induced inflammatory responses of human vascular smooth muscle cells by activating NADPH oxidase 4. Cardiovasc Res (2007) 75(3):555–65.10.1016/j.cardiores.2007.04.027
    1. Kim Y, Ryu J, Ryu MS, Lim S, Han KO, Lim IK, et al. C-reactive protein induces G2/M phase cell cycle arrest and apoptosis in monocytes through the upregulation of B-cell translocation gene 2 expression. FEBS Lett (2014) 588(4):625–31.10.1016/j.febslet.2014.01.008
    1. Tugal D, Liao X, Jain MK. TIS21 (/BTG2/PC3) as a link between ageing and cancer: cell cycle regulator and endogenous cell death molecule. Arterioscler Thromb Vasc Biol (2013) 33:1135–44.10.1161/ATVBAHA.113.301453
    1. Torzewski M, Rist C, Mortensen RF, Zwaka TP, Bienek M, Waltenberger J, et al. C-reactive protein in the arterial intima role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol (2000) 20(9):2094–9.10.1161/01.ATV.20.9.2094
    1. Guyton KZ, Xu Q, Holbrook NJ. Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. Biochem J (1996) 314(2):547–54.10.1042/bj3140547
    1. Blaschke F, Bruemmer D, Yin F, Takata Y, Wang W, Fishbein MC, et al. C-reactive protein induces apoptosis in human coronary vascular smooth muscle cells. Circulation (2004) 110(5):579–87.10.1161/01.CIR.0000136999.77584.A2
    1. Khreiss T, József L, Hossain S, Chan JS, Potempa LA, Filep JG. Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. J Biol Chem (2002) 277(43):40775–81.10.1074/jbc.M205378200
    1. Gershov D, Kim S, Brot N, Elkon KB. C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response implications for systemic autoimmunity. J Exp Med (2000) 192(9):1353–64.10.1084/jem.192.9.1353
    1. Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, et al. A self-fulfilling prophecy C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation (2002) 106(8):913–9.10.1161/01.CIR.0000029802.88087.5E
    1. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation (2002) 106(12):1439–41.10.1161/01.CIR.0000033116.22237.F9
    1. Singh U, Devaraj S, Vasquez-Vivar J, Jialal I. C-reactive protein decreases endothelial nitric oxide synthase activity via uncoupling. J Mol Cell Cardiol (2007) 43(6):780–91.10.1016/j.molcel.2007.06.030
    1. Schwedler SB, Kuhlencordt PJ, Ponnuswamy PP, Hatiboglu G, Quaschning T, Widder J, et al. Native C-reactive protein induces endothelial dysfunction in ApoE−/− mice: implications for iNOS and reactive oxygen species. Atherosclerosis (2007) 195(2):76–84.10.1016/j.atherosclerosis.2007.06.013
    1. Khreiss T, József L, Potempa LA, Filep JG. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ Res (2005) 97(7):690–7.10.1161/01.RES.0000183881.11739.CB
    1. Zhang JM, An J. Cytokines, inflammation and pain. Int Anesthesiol Clin (2007) 45(2):27–37.10.1097/AIA.0b013e318034194e
    1. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta (2011) 1813(5):878–88.10.1016/j.bbamcr.2011.01.034
    1. Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res (2014) 2(4):288–94.10.1158/2326-6066.CIR-14-0022
    1. Han KH, Hong KH, Park JH, Ko J, Kang DH, Choi KJ, et al. C-reactive protein promotes monocyte chemoattractant protein-1-mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes. Circulation (2004) 109(21):2566–71.10.1161/01.CIR.0000131160.94926.6E
    1. Krayem I, Bazzi S, Karam M. The combination of CRP isoforms with oxLDL decreases TNF-α and IL-6 release by U937-derived macrophages. Biomed Rep (2017) 7:272–6.10.3892/br.2017.949
    1. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science (1992) 258:1798–1798.10.1126/science.1281554
    1. Bickel M. The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol (1993) 64(5 Suppl):456–60.
    1. Palomino DCT, Marti LC. Chemokines and immunity. Einstein (São Paulo) (2015) 13(3):469–73.10.1590/S1679-45082015RB3438
    1. Kibayashi E, Urakaze M, Kobashi C, Kishida M, Takata M, Akira SATO, et al. Inhibitory effect of pitavastatin (NK-104) on the C-reactive-protein-induced interleukin-8 production in human aortic endothelial cells. Clin Sci (2005) 108(6):515–21.10.1042/CS20040315
    1. Wigmore SJ, Fearon KC, Maingay JP, Lai PB, Ross JA. Interleukin-8 can mediate acute-phase protein production by isolated human hepatocytes. Am J Physiol (1997) 273(4):E720–6.10.1152/ajpendo.1997.273.4.E720
    1. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein (MCP-1): an overview. J Interferon Cytokine Res (2009) 29(6):313–26.10.1089/jir.2008.0027
    1. Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta (2010) 411(21):1570–9.10.1016/j.cca.2010.07.006
    1. Pasceri V, Chang J, Willerson JT, Yeh ET. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation (2001) 103(21):2531–4.10.1161/01.CIR.103.21.2531
    1. Yeh ET, Willerson JT. Coming of age of C-reactive protein using inflammation markers in cardiology. Circulation (2003) 107(3):370–1.10.1161/01.CIR.0000053731.05365.5A
    1. Hattori Y, Matsumura M, Kasai K. Vascular smooth muscle cell activation by C-reactive protein. Cardiovasc Res (2003) 58(1):186–95.10.1016/S0008-6363(02)00855-6
    1. Zelová H, Hošek J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res (2013) 62(7):641–51.10.1007/s00011-013-0633-0
    1. Ashcroft GS, Jeong MJ, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, et al. Tumor necrosis factor-alpha (TNF-α) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen (2012) 20:38–49.10.1111/j.1524-475X.2011.00748.x
    1. Popa C, Netea MG, Van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res (2007) 48(4):751–62.10.1194/jlr.R600021-JLR200
    1. Inatsu A, Kinoshita M, Nakashima H, Shimizu J, Saitoh D, Tamai S, et al. Novel mechanism of C-reactive protein for enhancing mouse liver innate immunity. Hepatology (2009) 49(6):2044–54.10.1002/hep.22888

Source: PubMed

3
S'abonner