Brazilian dietary patterns and the dietary approaches to stop hypertension (DASH) diet-relationship with metabolic syndrome and newly diagnosed diabetes in the ELSA-Brasil study

Michele Drehmer, Andrew O Odegaard, Maria Inês Schmidt, Bruce B Duncan, Letícia de Oliveira Cardoso, Sheila M Alvim Matos, Maria Del Carmen B Molina, Sandhi M Barreto, Mark A Pereira, Michele Drehmer, Andrew O Odegaard, Maria Inês Schmidt, Bruce B Duncan, Letícia de Oliveira Cardoso, Sheila M Alvim Matos, Maria Del Carmen B Molina, Sandhi M Barreto, Mark A Pereira

Abstract

Background: Studies evaluating dietary patterns, including the DASH diet, and their relationship with the metabolic syndrome and diabetes may help to understand the role of dairy products (low fat or full fat) in these conditions. Our aim is to identify dietary patterns in Brazilian adults and compare them with the (DASH) diet quality score in terms of their associations with metabolic syndrome and newly diagnosed diabetes in the Brazilian Longitudinal Study of Adult Health-the ELSA-Brasil study.

Methods: The ELSA-Brasil is a multicenter cohort study comprising 15,105 civil servants, aged 35-74 years at baseline (2008-2010). Standardized interviews and exams were carried out, including an OGTT. We analyzed baseline data for 10,010 subjects. Dietary patterns were derived by principal component analysis. Multivariable logistic regression investigated associations of dietary patterns with metabolic syndrome and newly diagnosed diabetes and multivariable linear regression with components of metabolic syndrome.

Results: After controlling for potential confounders, we observed that greater adherence to the Common Brazilian meal pattern (white rice, beans, beer, processed and fresh meats), was associated with higher frequencies of newly diagnosed diabetes, metabolic syndrome and all of its components, except HDL-C. Participants with greater intake of a Common Brazilian fast foods/full fat dairy/milk based desserts pattern presented less newly diagnosed diabetes. An inverse association was also seen between the DASH Diet pattern and the metabolic syndrome, blood pressure and waist circumference. Diet, light foods and beverages/low fat dairy pattern was associated with more prevalence of both outcomes, and higher fasting glucose, HDL-C, waist circumference (among men) and lower blood pressure. Vegetables/fruit dietary pattern did not protect against metabolic syndrome and newly diagnosed diabetes but was associated with lower waist circumference.

Conclusions: The inverse associations found for the dietary pattern characterizing Brazilian fast foods and desserts, typically containing dairy products, with newly diagnosed diabetes, and for the DASH diet with metabolic syndrome, support previously demonstrated beneficial effects of dairy products in metabolism. The positive association with metabolic syndrome and newly diagnosed diabetes found for the pattern characterizing a typical Brazilian meal deserves further investigation, particularly since it is frequently accompanied by processed meat. Trial registration NCT02320461. Registered 18 December 2014.

Keywords: Cohort study; Diabetes; Dietary patterns; Metabolic syndrome.

Figures

Fig. 1
Fig. 1
Adjusted* means for fasting glucose (mg/dL), triglycerides (mg/dL), systolic and diastolic blood pressure according to quintiles of adherence to the four dietary patterns identified and to the DASH-diet. ELSA-Brasil 2008–2010 (n = 9835). *Means obtained through multiple linear regression adjusting for: race, age, sex, education, study center, menopause, occupational status, family history of diabetes, BMI, physical activity, smoking, alcohol, calories/day
Fig. 2
Fig. 2
Adjusted* means for waist circumference (cm) in men and women and HDL cholesterol (mg/dL) in men and women according to quintiles of adherence to the four dietary patterns identified and to the DASH-diet. ELSA-Brasil 2008–2010 (n = 9835). *Means obtained through multiple linear regression adjusting for: race, age, sex, education, study center, menopause, occupational status, family history of diabetes, BMI, physical activity, smoking, alcohol, calories/day

References

    1. da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, Guariguata L, Seuring T, Zhang P, Cavan D, Makaroff LE. IDF diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract. 2016;117:48–54. doi: 10.1016/j.diabres.2016.04.016.
    1. O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1–12. doi: 10.1111/obr.12229.
    1. Waxman A, World Health Assembly WHO global strategy on diet, physical activity and health. Food Nutr Bull. 2004;25(3):292–302. doi: 10.1177/156482650402500310.
    1. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research G Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. doi: 10.1056/NEJMoa012512.
    1. Neuhouser ML, Howard B, Lu J, Tinker LF, Van Horn L, Caan B, Rohan T, Stefanick ML, Thomson CA. A low-fat dietary pattern and risk of metabolic syndrome in postmenopausal women: the women’s health Initiative. Metabolism. 2012;61(11):1572–1581. doi: 10.1016/j.metabol.2012.04.007.
    1. Batis C, Mendez MA, Sotres-Alvarez D, Gordon-Larsen P, Popkin B. Dietary pattern trajectories during 15 years of follow-up and HbA1c, insulin resistance and diabetes prevalence among Chinese adults. J Epidemiol Commun Health. 2014;68(8):773–779. doi: 10.1136/jech-2013-203560.
    1. Odegaard AOP. Dietary patterns and type 2 diabetes. In: Press C, editor. Nutrition and type 2 diabetes etiology and prevention. New York; 2014: p. 173–92.
    1. Newby PK, Muller D, Tucker KL. Associations of empirically derived eating patterns with plasma lipid biomarkers: a comparison of factor and cluster analysis methods. Am J Clin Nutr. 2004;80(3):759–767.
    1. Jacobs DR, Jr, Steffen LM. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr. 2003;78(3 Suppl):508S–513S.
    1. McNaughton SA, Mishra GD, Brunner EJ. Dietary patterns, insulin resistance, and incidence of type 2 diabetes in the Whitehall II Study. Diabetes Care. 2008;31(7):1343–1348. doi: 10.2337/dc07-1946.
    1. Maghsoudi Z, Ghiasvand R, Salehi-Abargouei A. Empirically derived dietary patterns and incident type 2 diabetes mellitus: a systematic review and meta-analysis on prospective observational studies. Public Health Nutr. 2015:1–12.
    1. Nettleton JA, Polak JF, Tracy R, Burke GL, Jacobs DR., Jr Dietary patterns and incident cardiovascular disease in the multi-ethnic study of atherosclerosis. Am J Clin Nutr. 2009;90(3):647–654. doi: 10.3945/ajcn.2009.27597.
    1. Gadgil MD, Anderson CA, Kandula NR, Kanaya AM. Dietary patterns are associated with metabolic risk factors in South Asians living in the United States. J Nutr. 2015;145(6):1211–1217. doi: 10.3945/jn.114.207753.
    1. Liu L, Nettleton JA, Bertoni AG, Bluemke DA, Lima JA, Szklo M. Dietary pattern, the metabolic syndrome, and left ventricular mass and systolic function: the multi-ethnic study of atherosclerosis. Am J Clin Nutr. 2009;90(2):362–368. doi: 10.3945/ajcn.2009.27538.
    1. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, DASH Collaborative Research Group et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336(16):1117–1124. doi: 10.1056/NEJM199704173361601.
    1. Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168(7):713–720. doi: 10.1001/archinte.168.7.713.
    1. Struijk EA, May AM, Wezenbeek NL, Fransen HP, Soedamah-Muthu SS, Geelen A, Boer JM, van der Schouw YT, Bueno-de-Mesquita HB, Beulens JW. Adherence to dietary guidelines and cardiovascular disease risk in the EPIC-NL cohort. Int J Cardiol. 2014;176(2):354–359. doi: 10.1016/j.ijcard.2014.07.017.
    1. Liese AD, Nichols M, Sun X, D’Agostino RB, Jr, Haffner SM. Adherence to the DASH Diet is inversely associated with incidence of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2009;32(8):1434–1436. doi: 10.2337/dc09-0228.
    1. Lin PH, Yeh WT, Svetkey LP, Chuang SY, Chang YC, Wang C, Pan WH. Dietary intakes consistent with the DASH dietary pattern reduce blood pressure increase with age and risk for stroke in a Chinese population. Asia Pac J Clin Nutr. 2013;22(3):482–491.
    1. Shirani F, Salehi-Abargouei A, Azadbakht L. Effects of dietary approaches to stop hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29(7–8):939–947. doi: 10.1016/j.nut.2012.12.021.
    1. Aune D, Norat T, Romundstad P, Vatten LJ. Dairy products and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Am J Clin Nutr. 2013;98(4):1066–1083. doi: 10.3945/ajcn.113.059030.
    1. Yakoob MY, Shi P, Willett WC, Rexrode KM, Campos H, Orav EJ, Hu FB, Mozaffarian D. Circulating biomarkers of dairy fat and risk of incident diabetes mellitus among men and women in the United States in two large prospective cohorts. Circulation. 2016;133(17):1645–1654. doi: 10.1161/CIRCULATIONAHA.115.018410.
    1. Drehmer M, Pereira MA, Schmidt MI, Del Carmen BMM, Alvim S, Lotufo PA, Duncan BB. Associations of dairy intake with glycemia and insulinemia, independent of obesity, in Brazilian adults: the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) Am J Clin Nutr. 2015;101(4):775–782. doi: 10.3945/ajcn.114.102152.
    1. Drehmer M, Pereira MA, Schmidt MI, Alvim S, Lotufo PA, Luft VC, Duncan BB. Total and full-fat, but not low-fat, dairy product intakes are inversely associated with metabolic syndrome in adults. J Nutr. 2016;146(1):81–89. doi: 10.3945/jn.115.220699.
    1. Stricker MD, Onland-Moret NC, Boer JM, van der Schouw YT, Verschuren WM, May AM, Peeters PH, Beulens JW. Dietary patterns derived from principal component- and k-means cluster analysis: long-term association with coronary heart disease and stroke. Nutr Metab Cardiovasc Dis. 2013;23(3):250–256. doi: 10.1016/j.numecd.2012.02.006.
    1. Schmidt MI, Duncan BB, Mill JG, Lotufo PA, Chor D, Barreto SM, Aquino EM, Passos VM, Matos SM, Molina Mdel C, et al. Cohort profile: Longitudinal Study of Adult Health (ELSA-Brasil) Int J Epidemiol. 2015;44(1):68–75. doi: 10.1093/ije/dyu027.
    1. Molina Mdel C, Bensenor IM, Cardoso Lde O, Velasquez-Melendez G, Drehmer M, Pereira TS, Faria CP, Melere C, Manato L, Gomes AL, et al. Reproducibility and relative validity of the Food frequency questionnaire used in the ELSA-Brasil. Cad Saude Publica. 2013;29(2):379–389. doi: 10.1590/S0102-311X2013000600024.
    1. Center NC. Nutrition data system for research software. Minneapolis: University of Minnesota; 2010.
    1. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC, Jr, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644.
    1. Nettleton JA, Steffen LM, Ni H, Liu K, Jacobs DR., Jr Dietary patterns and risk of incident type 2 diabetes in the Multi-ethnic study of atherosclerosis (MESA) Diabetes Care. 2008;31(9):1777–1782. doi: 10.2337/dc08-0760.
    1. Ardisson Korat AV, Willett WC, Hu FB. Diet, lifestyle, and genetic risk factors for type 2 diabetes: a review from the Nurses’ Health Study, Nurses’ Health Study 2, and Health Professionals’ Follow-up Study. Curr Nutr Rep. 2014;3(4):345–354. doi: 10.1007/s13668-014-0103-5.
    1. Barbaresko J, Siegert S, Koch M, Aits I, Lieb W, Nikolaus S, Laudes M, Jacobs G, Nothlings U. Comparison of two exploratory dietary patterns in association with the metabolic syndrome in a Northern German population. Br J Nutr. 2014;112(8):1364–1372. doi: 10.1017/S0007114514002098.
    1. Nettleton JA, Steffen LM, Mayer-Davis EJ, Jenny NS, Jiang R, Herrington DM, Jacobs DR., Jr Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA) Am J Clin Nutr. 2006;83(6):1369–1379.
    1. Defago MD, Elorriaga N, Irazola VE, Rubinstein AL. Influence of food patterns on endothelial biomarkers: a systematic review. J Clin Hypertens (Greenwich) 2014;16(12):907–913. doi: 10.1111/jch.12431.
    1. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597–605. doi: 10.1161/CIRCULATIONAHA.106.621854.
    1. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER, 3rd, Simons-Morton DG, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N Engl J Med. 2001;344(1):3–10. doi: 10.1056/NEJM200101043440101.
    1. Ericson U, Hellstrand S, Brunkwall L, Schulz CA, Sonestedt E, Wallstrom P, Gullberg B, Wirfalt E, Orho-Melander M. Food sources of fat may clarify the inconsistent role of dietary fat intake for incidence of type 2 diabetes. Am J Clin Nutr. 2015;101(5):1065–1080. doi: 10.3945/ajcn.114.103010.
    1. Praagman J, Beulens JW, Alssema M, Zock PL, Wanders AJ, Sluijs I, van der Schouw YT. The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. Am J Clin Nutr. 2016;103(2):356–365. doi: 10.3945/ajcn.115.122671.
    1. Pimpin L, Wu JH, Haskelberg H, Del Gobbo L, Mozaffarian D. Is butter back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. PLoS ONE. 2016;11(6):e0158118. doi: 10.1371/journal.pone.0158118.
    1. Pihlanto-Leppala A, Koskinen P, Piilola K, Tupasela T, Korhonen H. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J Dairy Res. 2000;67(1):53–64. doi: 10.1017/S0022029999003982.
    1. Hartwig FP, Horta BL, Smith GD, deMola CL, Victora CG. Association of lactase persistence genotype with milk consumption, obesity and blood pressure: a Mendelian randomization study in the 1982 Pelotas (Brazil) Birth Cohort, with a systematic review and meta-analysis. Int J Epidemiol. 2016;45:1573–1587. doi: 10.1093/ije/dyw074.
    1. Pereira MA. Sugar-sweetened and artificially-sweetened beverages in relation to obesity risk. Adv Nutr. 2014;5(6):797–808. doi: 10.3945/an.114.007062.
    1. Pereira MA, Odegaard AO. Artificially sweetened beverages—do they influence cardiometabolic risk? Curr Atheroscler Rep. 2013;15(12):375. doi: 10.1007/s11883-013-0375-z.
    1. Ferreira-Pego C, Babio N, Bes-Rastrollo M, Corella D, Estruch R, Ros E, Fito M, Serra-Majem L, Aros F, Fiol M, et al. Frequent consumption of sugar- and artificially sweetened beverages and natural and bottled fruit juices is associated with an increased risk of metabolic syndrome in a Mediterranean population at high cardiovascular disease risk. J Nutr. 2016;146:1528–1536. doi: 10.3945/jn.116.230367.
    1. Imamura F, O’Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, Forouhi NG. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ. 2015;351:h3576. doi: 10.1136/bmj.h3576.
    1. Yarmolinsky J, Duncan BB, Chambless LE, Bensenor IM, Barreto SM, Goulart AC, Santos IS, Diniz Mde F, Schmidt MI. Artificially sweetened beverage consumption is positively associated with newly diagnosed diabetes in normal-weight but not in overweight or obese Brazilian adults. J Nutr. 2016;146(2):290–297. doi: 10.3945/jn.115.220194.
    1. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–186.
    1. Wang QP, Lin YQ, Zhang L, Wilson YA, Oyston LJ, Cotterell J, Qi Y, Khuong TM, Bakhshi N, Planchenault Y, et al. Sucralose promotes food intake through NPY and a neuronal fasting response. Cell Metab. 2016;24(1):75–90. doi: 10.1016/j.cmet.2016.06.010.
    1. Park S, Ahn J, Lee BK. Very-low-fat diets may be associated with increased risk of metabolic syndrome in the adult population. Clin Nutr. 2015.
    1. Buil-Cosiales P, Toledo E, Salas-Salvado J, Zazpe I, Farras M, Basterra-Gortari FJ, Diez-Espino J, Estruch R, Corella D, Ros E, et al. Association between dietary fibre intake and fruit, vegetable or whole-grain consumption and the risk of CVD: results from the PREvencion con DIeta MEDiterranea (PREDIMED) trial. Br J Nutr. 2016;116(3):534–546. doi: 10.1017/S0007114516002099.
    1. Cardoso Lde O, Carvalho MS, Cruz OG, Melere C, Luft VC, Molina Mdel C, Faria CP, Bensenor IM, Matos SM, Fonseca Mde J, et al. Eating patterns in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): an exploratory analysis. Cad Saude Publica. 2016;32(5):e00066215.

Source: PubMed

3
S'abonner