HPTN 071 (PopART): a cluster-randomized trial of the population impact of an HIV combination prevention intervention including universal testing and treatment: mathematical model

Anne Cori, Helen Ayles, Nulda Beyers, Ab Schaap, Sian Floyd, Kalpana Sabapathy, Jeffrey W Eaton, Katharina Hauck, Peter Smith, Sam Griffith, Ayana Moore, Deborah Donnell, Sten H Vermund, Sarah Fidler, Richard Hayes, Christophe Fraser, HPTN 071 PopART Study Team, Yaw Agyei, Megan Baldwin, Mark Barnes, Virginia Bond, David Burns, Nathaniel Chishinga, Vanessa Cummings, Lynda Emel, Susan Eshleman, Peter Godfrey-Faussett, Elizabeth Greene, James Hargreaves, Tanette Headen, Lyn Horn, Peter Kim, Estelle Piwowar-Manning, Katie McCarthy, Maurice Musheke, Albert Mwango, Alwyn Mwinga, Monde Muyoyeta, Musonda Simwinga, Kwame Shanaube, Deborah Watson-Jones, Shauna Wolf, Rhonda White, Anne Cori, Helen Ayles, Nulda Beyers, Ab Schaap, Sian Floyd, Kalpana Sabapathy, Jeffrey W Eaton, Katharina Hauck, Peter Smith, Sam Griffith, Ayana Moore, Deborah Donnell, Sten H Vermund, Sarah Fidler, Richard Hayes, Christophe Fraser, HPTN 071 PopART Study Team, Yaw Agyei, Megan Baldwin, Mark Barnes, Virginia Bond, David Burns, Nathaniel Chishinga, Vanessa Cummings, Lynda Emel, Susan Eshleman, Peter Godfrey-Faussett, Elizabeth Greene, James Hargreaves, Tanette Headen, Lyn Horn, Peter Kim, Estelle Piwowar-Manning, Katie McCarthy, Maurice Musheke, Albert Mwango, Alwyn Mwinga, Monde Muyoyeta, Musonda Simwinga, Kwame Shanaube, Deborah Watson-Jones, Shauna Wolf, Rhonda White

Abstract

Background: The HPTN 052 trial confirmed that antiretroviral therapy (ART) can nearly eliminate HIV transmission from successfully treated HIV-infected individuals within couples. Here, we present the mathematical modeling used to inform the design and monitoring of a new trial aiming to test whether widespread provision of ART is feasible and can substantially reduce population-level HIV incidence.

Methods and findings: The HPTN 071 (PopART) trial is a three-arm cluster-randomized trial of 21 large population clusters in Zambia and South Africa, starting in 2013. A combination prevention package including home-based voluntary testing and counseling, and ART for HIV positive individuals, will be delivered in arms A and B, with ART offered universally in arm A and according to national guidelines in arm B. Arm C will be the control arm. The primary endpoint is the cumulative three-year HIV incidence. We developed a mathematical model of heterosexual HIV transmission, informed by recent data on HIV-1 natural history. We focused on realistically modeling the intervention package. Parameters were calibrated to data previously collected in these communities and national surveillance data. We predict that, if targets are reached, HIV incidence over three years will drop by >60% in arm A and >25% in arm B, relative to arm C. The considerable uncertainty in the predicted reduction in incidence justifies the need for a trial. The main drivers of this uncertainty are possible community-level behavioral changes associated with the intervention, uptake of testing and treatment, as well as ART retention and adherence.

Conclusions: The HPTN 071 (PopART) trial intervention could reduce HIV population-level incidence by >60% over three years. This intervention could serve as a paradigm for national or supra-national implementation. Our analysis highlights the role mathematical modeling can play in trial development and monitoring, and more widely in evaluating the impact of treatment as prevention.

Conflict of interest statement

Competing Interests: The authors declare that co-author Sten Vermund is a PLOS ONE Editorial Board member. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Model structure for susceptible men.
Figure 1. Model structure for susceptible men.
A. Flow diagram of the model. Arrows depict the different flow rates between compartments. Men can be circumcised during childhood (i.e., before the age of 15). If they are not, they can be circumcised following a negative HIV test. Upon testing, some HIV negative men decide to get circumcised. They then enter a “waiting” stage, which encompasses the time from testing to them actually visiting the clinic for circumcision. After circumcision, they go through a healing period, before being circumcised and healed. B. Relative susceptibility and infectivity in the different stages, relative to an uncircumcised man. Relative susceptibility and infectivity of circumcised men in healing period incorporate both biological increases in susceptibility and infectivity and reduction in sexual activity during the healing period (see main text).
Figure 2. Model structure for infected individuals.
Figure 2. Model structure for infected individuals.
A. Flow diagram of the model. The model describes progression through different stages of natural history and treatment. Arrows depict the different flow rates between compartments. Once infected, individuals enter an early/acute infection stage and then progress to death through 4 stages of infection shown in b. At any stage after acute infection, individuals can get HIV tested, following which a proportion of individuals will decide to seek care. Those individuals then enter the “treatment pending” stage, during which they visit the clinic and get assessed towards ART eligibility. Once assessed, all those eligible initiate treatment. Once on treatment, individuals go through a first phase during which viral load is not fully suppressed, before becoming successfully treated, that is, having a negligible viral load. Individuals on ART can drop out of or fail treatment; they then go back to the pre-test stages. B. Flow diagram of the four stages of infection following acute infection and leading to death. Those stages are defined by the level of CD4 in cells/mm3. Individuals can only move from a higher to a lower CD4 count. The rate of progressing through those stages is different for treated and untreated individuals (see File S1). C. Relative infectivity (on the log scale) of the different stages, compared to an undiagnosed individual with CD4≥350, not in acute infection. Individuals in acute infection and stage 4 (CD4<200) have an increased infectivity. Individuals on ART have a decreased infectivity.
Figure 3. Model fit and projections under…
Figure 3. Model fit and projections under central target scenario for Zambia (top row) and South Africa (bottom row).
Left panels show HIV prevalence and right panels show annualized HIV incidence over time. The red, blue and black lines correspond to arms A, B and C respectively. The grey dots and error bars are the UNAIDS HIV prevalence estimates .
Figure 4. Uncertainty on the trial outcome…
Figure 4. Uncertainty on the trial outcome in Zambia (top panels) and South Africa (bottom panels).
The red and blue histograms show the relative reduction in 3-year cumulative incidence in arms A and B respectively when parameters vary within ranges shown in Table 1. The left panels show results obtained when all parameters are varied, and the right panels when assuming no population-level behavioural changes associated with the intervention.

References

    1. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, et al. (2011) Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 365: 493–505.
    1. Donnell D, Baeten JM, Kiarie J, Thomas KK, Stevens W, et al. (2010) Heterosexual HIV-1 transmission after initiation of antiretroviral therapy: a prospective cohort analysis. Lancet 375: 2092–2098.
    1. Attia S, Egger M, Muller M, Zwahlen M, Low N (2009) Sexual transmission of HIV according to viral load and antiretroviral therapy: systematic review and meta-analysis. AIDS 23: 1397–1404.
    1. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG (2009) Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 373: 48–57.
    1. Tanser F, Barnighausen T, Grapsa E, Zaidi J, Newell ML (2013) High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science 339: 966–971.
    1. Iwuji CC, Orne-Gliemann J, Tanser F, Boyer S, Lessells RJ, et al. (2013) Evaluation of the impact of immediate versus WHO recommendations-guided antiretroviral therapy initiation on HIV incidence: the ANRS 12249 TasP (Treatment as Prevention) trial in Hlabisa sub-district, KwaZulu-Natal, South Africa: study protocol for a cluster randomised controlled trial. Trials 14: 230.
    1. Novitsky V, Wang R, Bussmann H, Lockman S, Baum M, et al. (2010) HIV-1 subtype C-infected individuals maintaining high viral load as potential targets for the “test-and-treat” approach to reduce HIV transmission. PLoS One 5: e10148.
    1. Boily MC, Masse B, Alsallaq R, Padian NS, Eaton JW, et al. (2012) HIV Treatment as Prevention: Considerations in the Design, Conduct, and Analysis of Cluster Randomized Controlled Trials of Combination HIV Prevention. PLoS Med 9: e1001250.
    1. Kurth AE, Mayer K, Beauchamp G, McKinstry L, Farrior J, et al. (2012) Clinician practices and attitudes regarding early antiretroviral therapy in the United States. J Acquir Immune Defic Syndr 61: e65–69.
    1. Vermund SH, Hodder SL, Justman JE, Koblin BA, Mastro TD, et al. (2010) Addressing research priorities for prevention of HIV infection in the United States. Clin Infect Dis 50 Suppl 3: S149–155.
    1. Vermund SH, Fidler SJ, Ayles H, Beyers N, Hayes RJ (2013) Can combination prevention strategies reduce HIV transmission in generalized epidemic settings in Africa? The HPTN 071 (PopART) study plan in South Africa and Zambia. J Acquir Immune Defic Syndr 63 Suppl 2: S221–227.
    1. Vermund SH, Hayes RJ (2013) Combination prevention: new hope for stopping the epidemic. Curr HIV/AIDS Rep 10: 169–186.
    1. Hayes R, Sabapathy K, Fidler S (2011) Universal testing and treatment as an HIV prevention strategy: research questions and methods. Curr HIV Res 9: 429–445.
    1. Hayes R, Ayles H, Beyers N, Sabapathy K, Floyd S, et al... (2013) HPTN 071 (PopART): Rationale and design of a cluster-randomised trial of the population impact of an HIV combination prevention intervention including universal testing and treatment – a study protocol for a cluster randomised trial. Under review.
    1. Garnett GP, Cousens S, Hallett TB, Steketee R, Walker N (2011) Mathematical models in the evaluation of health programmes. Lancet 378: 515–525.
    1. Eaton JW, Johnson LF, Salomon JA, Barnighausen T, Bendavid E, et al. (2012) HIV Treatment as Prevention: Systematic Comparison of Mathematical Models of the Potential Impact of Antiretroviral Therapy on HIV Incidence in South Africa. PLoS Med 9: e1001245.
    1. The HIV Modelling Consortium Treatment as Prevention Editorial Writing Group (2012) HIV treatment as prevention: models, data, and questions–towards evidence-based decision-making. PLoS Med 9: e1001259.
    1. White RG, Orroth KK, Korenromp EL, Bakker R, Wambura M, et al. (2004) Can population differences explain the contrasting results of the Mwanza, Rakai, and Masaka HIV/sexually transmitted disease intervention trials?: A modeling study. J Acquir Immune Defic Syndr 37: 1500–1513.
    1. Orroth KK, Freeman EE, Bakker R, Buve A, Glynn JR, et al. (2007) Understanding the differences between contrasting HIV epidemics in east and west Africa: results from a simulation model of the Four Cities Study. Sex Transm Infect 83 Suppl 1: i5–16.
    1. Hallett TB, Singh K, Smith JA, White RG, Abu-Raddad LJ, et al. (2008) Understanding the impact of male circumcision interventions on the spread of HIV in southern Africa. PLoS ONE 3: e2212.
    1. Bezemer D, de Wolf F, Boerlijst MC, van Sighem A, Hollingsworth TD, et al. (2008) A resurgent HIV-1 epidemic among men who have sex with men in the era of potent antiretroviral therapy. AIDS 22: 1071–1077.
    1. Bezemer D, de Wolf F, Boerlijst MC, van Sighem A, Hollingsworth TD, et al. (2010) 27 years of the HIV epidemic amongst men having sex with men in the Netherlands: an in depth mathematical model-based analysis. Epidemics 2: 66–79.
    1. Lodi S, Phillips A, Touloumi G, Geskus R, Meyer L, et al. (2011) Time from human immunodeficiency virus seroconversion to reaching CD4+ cell count thresholds <200, <350, and <500 Cells/mm(3): assessment of need following changes in treatment guidelines. Clin Infect Dis 53: 817–825.
    1. Thiebaut R, Pellegrin I, Chene G, Viallard JF, Fleury H, et al. (2005) Immunological markers after long-term treatment interruption in chronically HIV-1 infected patients with CD4 cell count above 400×10(6) cells/l. AIDS 19: 53–61.
    1. May M, Boulle A, Phiri S, Messou E, Myer L, et al. (2010) Prognosis of patients with HIV-1 infection starting antiretroviral therapy in sub-Saharan Africa: a collaborative analysis of scale-up programmes. Lancet 376: 449–457.
    1. Fernandez Guerrero ML, Rivas P, Molina M, Garcia R, De Gorgolas M (2005) Long-term follow-up of asymptomatic HIV-infected patients who discontinued antiretroviral therapy. Clin Infect Dis 41: 390–394.
    1. Touloumi G, Pantazis N, Antoniou A, Stirnadel HA, Walker SA, et al. (2006) Highly active antiretroviral therapy interruption: predictors and virological and immunologic consequences. J Acquir Immune Defic Syndr 42: 554–561.
    1. Gabillard D, Lewden C, Ndoye I, Moh R, Segeral O, et al. (2013) Mortality, AIDS-morbidity and loss to follow-up by current CD4 cell count among HIV-1 infected adults receiving antiretroviral therapy in Africa and Asia: data from the ANRS 12222 collaboration. J Acquir Immune Defic Syndr 62: 555–561.
    1. Gras L, Kesselring AM, Griffin JT, van Sighem AI, Fraser C, et al. (2007) CD4 cell counts of 800 cells/mm3 or greater after 7 years of highly active antiretroviral therapy are feasible in most patients starting with 350 cells/mm3 or greater. J Acquir Immune Defic Syndr 45: 183–192.
    1. Egger M, Spycher BD, Sidle J, Weigel R, Geng EH, et al. (2011) Correcting mortality for loss to follow-up: a nomogram applied to antiretroviral treatment programmes in sub-Saharan Africa. PLoS Med 8: e1000390.
    1. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, et al. (2005) Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med 2: e298.
    1. Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, et al. (2007) Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet 369: 657–666.
    1. Bailey RC, Moses S, Parker CB, Agot K, Maclean I, et al. (2007) Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet 369: 643–656.
    1. Mills E, Cooper C, Anema A, Guyatt G (2008) Male circumcision for the prevention of heterosexually acquired HIV infection: a meta-analysis of randomized trials involving 11,050 men. HIV Med 9: 332–335.
    1. Wawer MJ, Makumbi F, Kigozi G, Serwadda D, Watya S, et al. (2009) Circumcision in HIV-infected men and its effect on HIV transmission to female partners in Rakai, Uganda: a randomised controlled trial. Lancet 374: 229–237.
    1. Mehta SD, Gray RH, Auvert B, Moses S, Kigozi G, et al. (2009) Does sex in the early period after circumcision increase HIV-seroconversion risk? Pooled analysis of adult male circumcision clinical trials. AIDS 23: 1557–1564.
    1. UNAIDS/WHO (2008) Epidemiological Country Profiles - HIV & AIDS 2008.
    1. Ayles HM, Sismanidis C, Beyers N, Hayes RJ, Godfrey-Faussett P (2008) ZAMSTAR, The Zambia South Africa TB and HIV Reduction Study: design of a 2×2 factorial community randomized trial. Trials 9: 63.
    1. Sismanidis C, Moulton LH, Ayles H, Fielding K, Schaap A, et al. (2008) Restricted randomization of ZAMSTAR: a 2×2 factorial cluster randomized trial. Clin Trials 5: 316–327.
    1. Mckay MD, Beckman RJ, Conover WJ (1979) A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 21: 239–245.
    1. Bechange S, Bunnell R, Awor A, Moore D, King R, et al. (2010) Two-year follow-up of sexual behavior among HIV-uninfected household members of adults taking antiretroviral therapy in Uganda: no evidence of disinhibition. AIDS Behav 14: 816–823.
    1. Kennedy C, O'Reilly K, Medley A, Sweat M (2007) The impact of HIV treatment on risk behaviour in developing countries: a systematic review. AIDS Care 19: 707–720.
    1. Mattson CL, Campbell RT, Bailey RC, Agot K, Ndinya-Achola JO, et al. (2008) Risk compensation is not associated with male circumcision in Kisumu, Kenya: a multi-faceted assessment of men enrolled in a randomized controlled trial. PLoS One 3: e2443.
    1. Coates T, Eshleman S, Chariyalertsak S, Chingono A, Gray G, et al... (2013) Community-level Reductions in Estimated HIV Incidence: HIV Prevention Trials Network 043, Project Accept. CROI. Atlanta: abstract number W-173.
    1. Cohen MS, Dye C, Fraser C, Miller WC, Powers KA, et al. (2012) HIV treatment as prevention: debate and commentary–will early infection compromise treatment-as-prevention strategies? PLoS Med 9: e1001232.
    1. Lurie MN, Williams BG, Zuma K, Mkaya-Mwamburi D, Garnett GP, et al. (2003) Who infects whom? HIV-1 concordance and discordance among migrant and non-migrant couples in South Africa. AIDS 17: 2245–2252.
    1. Tanser F, Barnighausen T, Hund L, Garnett GP, McGrath N, et al. (2011) Effect of concurrent sexual partnerships on rate of new HIV infections in a high-prevalence, rural South African population: a cohort study. Lancet 378: 247–255.

Source: PubMed

3
S'abonner