Simultaneous real-time PCR detection of nine prevalent sexually transmitted infections using a predesigned double-quenched TaqMan probe panel

Ha T V Bui, Huyen T Bui, Son V Chu, Huyen T Nguyen, Anh T V Nguyen, Phuong T Truong, Thang T H Dang, Anh T V Nguyen, Ha T V Bui, Huyen T Bui, Son V Chu, Huyen T Nguyen, Anh T V Nguyen, Phuong T Truong, Thang T H Dang, Anh T V Nguyen

Abstract

Sexually transmitted diseases are major causes of infertility, ectopic pregnancy, and premature birth. Here, we developed a new multiplex real-time polymerase chain reaction (PCR) assay for the simultaneous detection of nine major sexually transmitted infections (STIs) found in Vietnamese women, including Chlamydia trachomatis, Neisseria gonorrhoeae, Gardnerella vaginalis, Trichomonas vaginalis, Candida albicans, Mycoplasma hominis, Mycoplasma genitalium, and human alphaherpesviruses 1 and 2. A panel containing three tubes × three pathogens/tube was predesigned based on double-quenched TaqMan probes to increase detection sensitivity. There was no cross-reactivity among the nine STIs and other non-targeted microorganisms. Depending on each pathogen, the agreement with commercial kits, sensitivity, specificity, repeatability and reproducibility coefficient of variation (CV), and limit of detection of the developed real-time PCR assay were 99.0%-100%, 92.9%-100%, 100%, <3%, and 8-58 copies/reaction, respectively. One assay cost only 2.34 USD. Application of the assay for the detection of the nine STIs in 535 vaginal swab samples collected from women in Vietnam yielded 532 positive cases (99.44%). Among the positive samples, 37.76% had one pathogen, with G. vaginalis (33.83%) as the most prevalent; 46.36% had two pathogens, with G. vaginalis + C. albicans as the most prevalent combination (38.13%); and 11.78%, 2.99%, and 0.56% had three, four, and five pathogens, respectively. In conclusion, the developed assay represents a sensitive and cost-effective molecular diagnostic tool for the detection of major STIs in Vietnam and is a model for the development of panel detections of common STIs in other countries.

Conflict of interest statement

The authors have declared that no competing interests exist.

Copyright: © 2023 Bui et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Figures

Fig 1. Amplification plots of “in-house” real-time…
Fig 1. Amplification plots of “in-house” real-time PCR assay using double-quenched TaqMan probes for nine pathogens.
Standard plasmids at seven 10-fold reducing concentrations in the range of 5 × 102–5 × 108 copies/reaction (plots were presented from the left to the right).
Fig 2. Standard curves representing for the…
Fig 2. Standard curves representing for the relationship between log10 plasmid copies/reaction and the threshold cycle (Ct).
Equations: y = -ax + b with R2 for amplification of nine pathogens.
Fig 3. Real-time PCR amplification curves taken…
Fig 3. Real-time PCR amplification curves taken from five representative vaginal swab clinical samples.
Samples include positive with one (A1–A3), two (B1–B3), three (C1–C3), four (D1–D3), and five (E1–E3) pathogens among the screened nine STIs. Positive and negative controls in the three master mixes 1/2/3 were PC 1/2/3 and NC1/2/3, respectively. Amplification curves for positive controls, negative controls, and positive clinical samples are presented in red, black, and green, respectively.

References

    1. Organization WH. Sexually transmitted infections (STIs) [cited 22 August 2022]. In: WHO news room/Fact sheet 22 August 2022 [Internet]. Available from: .
    1. Pham QD, Nguyen TV, Hoang CQ, Cao V, Khuu NV, Phan HT, et al.. Prevalence of HIV/STIs and associated factors among men who have sex with men in An Giang, Vietnam. Sex Transm Dis. 2012;39(10): 799–806. doi: 10.1097/OLQ.0b013e318265b180
    1. Nguyen M, Le GM, Nguyen HTT, Nguyen HD, Klausner JD. Acceptability and feasibility of sexually transmissible infection screening among pregnant women in Hanoi, Vietnam. Sex Health. 2019;16(2): 133–8. doi: 10.1071/SH18041
    1. Chen JS, Levintow SN, Tran HV, Sripaipan T, Nguyen MX, Nguyen SM, et al.. HIV and STI prevalence and testing history among men who have sex with men in Hanoi, Vietnam. Int J STD AIDS. 2022;33(2): 193–201. doi: 10.1177/09564624211060185
    1. Nguyen BH, Pham QM, Hoang L, Sansone A, Jannini EA, Tran CM. Investigating the microbial pathogens of sexually transmitted infections among heterosexual Vietnamese men with symptomatic urethritis. Aging Male. 2022;25(1): 125–33. doi: 10.1080/13685538.2022.2063272
    1. Battle TJ, Golden MR, Suchland KL, Counts JM, Hughes JP, Stamm WE, et al.. Evaluation of laboratory testing methods for Chlamydia trachomatis infection in the era of nucleic acid amplification. J Clin Microbiol. 2001;39(8): 2924–7. doi: 10.1128/JCM.39.8.2924-2927.2001
    1. Wald A, Huang ML, Carrell D, Selke S, Corey L. Polymerase chain reaction for detection of Herpes simplex virus (HSV) DNA on mucosal surfaces: comparison with HSV isolation in cell culture. J Infect Dis. 2003;188: 1345–51. doi: 10.1086/379043
    1. Caliendo AM, Jordan JA, Green AM, Ingersoll J, Diclemente RJ, Wingood GM. Real-time PCR improves detection of Trichomonas vaginalis infection compared with culture using self-collected vaginal swabs. Infect Dis Obstet Gynecol. 2005;13(3): 145–50. doi: 10.1080/10647440500068248
    1. Namvar L, Olofsson S, Bergstrom T, Lindh M. Detection and typing of Herpes simplex virus (HSV) in mucocutaneous samples by TaqMan PCR targeting a gB segment homologous for HSV types 1 and 2. J Clin Microbiol. 2005;43(5): 2058–64. doi: 10.1128/JCM.43.5.2058-2064.2005
    1. Jalal H, Stephen H, Curran MD, Burton J, Bradley M, Carne C. Development and validation of a rotor-gene real-time PCR assay for detection, identification, and quantification of Chlamydia trachomatis in a single reaction. J Clin Microbiol. 2006;44(1): 206–13. doi: 10.1128/JCM.44.1.206-213.2006
    1. Goire N, Nissen MD, LeCornec GM, Sloots TP, Whiley DM. A duplex Neisseria gonorrhoeae real-time polymerase chain reaction assay targeting the gonococcal porA pseudogene and multicopy opa genes. Diagn Microbiol Infect Dis. 2008;61(1): 6–12. doi: 10.1016/j.diagmicrobio.2007.12.007
    1. Chalker VJ, Jordan K, Ali T, Ison C. Real-time PCR detection of the mg219 gene of unknown function of Mycoplasma genitalium in men with and without non-gonococcal urethritis and their female partners in England. J Med Microbiol. 2009;58(7): 895–9. doi: 10.1099/jmm.0.009977-0
    1. Pascual A, Jaton K, Ninet B, Bille J, Greub G. New diagnostic Real-time PCR for specific detection of Mycoplasma hominis DNA. Int J Microbiol. 2010. doi: 10.1155/2010/317512
    1. Wei HB, Zou SX, Yang XL, Yang DQ, Chen XD. Development of multiplex real-time quantitative PCR for simultaneous detection of Chlamydia trachomatis and Ureaplasma parvum. Clin Biochem. 2012;45(9): 663–7. doi: 10.1016/j.clinbiochem.2012.03.010
    1. Trembizki E, Buckley C, Donovan B, Chen M, Guy R, Kaldor J, et al.. Direct real-time PCR-based detection of Neisseria gonorrhoeae 23S rRNA mutations associated with azithromycin resistance. J Antimicrob Chemother. 2015;70(12): 3244–9. doi: 10.1093/jac/dkv274
    1. Gaydos CA, Cartwright CP, Colaninno P, Welsch J, Holden J, Ho SY, et al.. Performance of the Abbott Real-time CT/NG for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol. 2010;48(9): 3236–43. doi: 10.1128/JCM.01019-10
    1. Martin DH, Cammarata C, Van Der Pol B, Jones RB, Quinn TC, Gaydos CA, et al.. Multicenter evaluation of Amplicor and automated Cobas Amplicor CT/NG tests for Neisseria gonorrhoeae. J Clin Microbiol. 2000;38(10): 3544–9.
    1. Van Der Pol B, Quinn TC, Gaydos CA, Crotchfelt K, Schachter J, Moncada J, et al.. Multicenter evaluation of the Aplicor and automated Cobas Amplicor CT/NG tests for detection of Chlamydia trachomatis. J Clin Microbiol. 2000;38(3): 1105–12.
    1. Lowe P, O’Loughlin P, Evans K, White M, Bartley PB, Vohra R. Comparison of the Gen-probe APTIMA combo 2 assay to the Amplicor CT/NG assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine samples from Australian men and women. J Clin Microbiol. 2006;44(7): 2619–21. doi: 10.1128/JCM.00476-06
    1. Van Der Pol B, Taylor SN, Lebar W, Davis T, Fuller D, Mena L, et al.. Clinical evaluation of the BD ProbeTec Neisseria gonorrhoeae Qx amplified DNA assay on the BD Viper system with XTR technology. Sex Transm Dis. 2012;39(2): 147–53. doi: 10.1097/OLQ.0b013e3182372fd8
    1. Jacobsson S, Boiko I, Golparian D, Blondeel K, Kiarie J, Toskin I, et al.. WHO laboratory validation of Xpert® CT/NG and Xpert® TV on the GeneXpert system verifies high performances. APMIS. 2018;126(12): 907–12. doi: 10.1111/apm.12902
    1. Papp JR, Schachter J, Gaydos CA, Van Der Pol B. Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae—2014. MMWR Recomm Rep. 2014;63: 1–19.
    1. Pereyre S, Camelena F, Henin N, Bercot B, Bebear C. Clinical performance of four multiplex real-time PCR kits detecting urogenital and sexually transmitted pathogens. Clin Microbiol Infect. 2022;28(5): 733 e7- e13. doi: 10.1016/j.cmi.2021.09.028
    1. Ashshi AM, Batwa SA, Kutbi SY, Malibary FA, Batwa M, Refaat B. Prevalence of 7 sexually transmitted organisms by multiplex real-time PCR in Fallopian tube specimens collected from Saudi women with and without ectopic pregnancy. BMC Infect Dis. 2015;15: 569. doi: 10.1186/s12879-015-1313-1
    1. Balashov SV, Mordechai E, Adelson ME, Gygax SE. Identification, quantification and subtyping of Gardnerella vaginalis in noncultured clinical vaginal samples by quantitative PCR. J Med Microbiol. 2014;63(2): 162–75. doi: 10.1099/jmm.0.066407-0
    1. Doseeva V, Forbes T, Wolff J, Khripin Y, O’Neil D, Rothmann T, et al.. Multiplex isothermal helicase-dependent amplification assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. Diagn Microbiol Infect Dis. 2011;71(4): 354–65. doi: 10.1016/j.diagmicrobio.2011.08.021
    1. Abou Tayoun AN, Burchard PR, Caliendo AM, Scherer A, Tsongalis GJ. A multiplex PCR assay for the simultaneous detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis. Exp Mol Pathol. 2015;98(2): 214–8. doi: 10.1016/j.yexmp.2015.01.011
    1. Venter JME, Mahlangu PM, Muller EE, Lewis DA, Rebe K, Struthers H, et al.. Comparison of an in-house real-time duplex PCR assay with commercial Hologic® Aptima assays for the detection of Neisseria gonorrhoeae and Chlamydia trachomatis in urine and extra-genital specimens. BMC Infect Dis. 2019;19(1): 6. doi: 10.1186/s12879-018-3629-0
    1. Hu XM, Xu JX, Jiang LX, Deng LR, Gu ZM, Xie XY, et al.. Design and evaluation of a novel multiplex real-time PCR melting curve assay for the simultaneous detection of nine sexually transmitted disease pathogens in genitourinary secretions. Front Cell Infect Microbiol. 2019;9: 382. doi: 10.3389/fcimb.2019.00382
    1. Muller EE, Venter JM, Magooa MP, Morrison C, Lewis DA, Mavedzenge SN. Development of a rotor-gene real-time PCR assay for the detection and quantification of Mycoplasma genitalium. J Microbiol Methods. 2012;88(2): 311–5. doi: 10.1016/j.mimet.2011.12.017
    1. Hanna J, Yassine R, El-Bikai R, Curran MD, Azar M, Yeretzian J, et al.. Molecular epidemiology and socio-demographic risk factors of sexually transmitted infections among women in Lebanon. BMC Infect Dis. 2020;20(1): 375. doi: 10.1186/s12879-020-05066-8
    1. Payne VK, Florence Cecile TT, Cedric Y, Christelle Nadia NA, Jose O. Risk factors associated with prevalence of Candida albicans, Gardnerella vaginalis, and Trichomonas vaginalis among women at the district hospital of Dschang, West Region, Cameroon. Int J Microbiol. 2020;2020. doi: 10.1155/2020/8841709
    1. Fajoyomi Bridget U, Azubike Faustina C, Daodu Bamidele T. Prevalence of Candida albicans species among females with symptoms. GSC Biol Pharm Sci. 2022;18(1): 73–7. doi: 10.30574/gscbps.2022.18.1.0026
    1. Huneeus A, Schilling A, Fernandez MI. Prevalence of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis infection in Chilean adolescents and young adults. J Pediatr Adolesc Gynecol. 2018;31(4): 411–5. doi: 10.1016/j.jpag.2018.01.003
    1. Campos GB, Lobao TN, Selis NN, Amorim AT, Martins HB, Barbosa MS, et al.. Prevalence of Mycoplasma genitalium and Mycoplasma hominis in urogenital tract of Brazilian women. BMC Infect Dis. 2015;15: 60. doi: 10.1186/s12879-015-0792-4
    1. Zhang W, Li L, Zhang X, Fang H, Chen H, Rong C. Infection prevalence and antibiotic resistance levels in Ureaplasma urealyticum and Mycoplasma hominis in gynecological outpatients of a Tertiary hospital in China from 2015 to 2018. Can J Infect Dis Med Microbiol. 2021. doi: 10.1155/2021/8842267
    1. Lee MY, Kim MH, Lee WI, Kang SY, Jeon YL. Prevalence and antibiotic susceptibility of Mycoplasma hominis and Ureaplasma urealyticum in pregnant women. Yonsei Med J. 2016;57(5): 1271–5. doi: 10.3349/ymj.2016.57.5.1271
    1. Doroftei B, Ilie OD, Armeanu T, Anton E, Scripcariu I, Maftei R. The prevalence of Ureaplasma urealyticum and Mycoplasma hominis infections in infertile patients in the Northeast Region of Romania. Medicina. 2021;57(3). doi: 10.3390/medicina57030211
    1. Sarier M. Prevalence of polymicrobial infection in urethritis. J Urol Surg. 2019;6(3): 180–3. doi: 10.4274/jus.galenos.2019.2405
    1. Christofolini DM, Leuzzi L, Mafra FA, Rodart I, Kayaki EA, Bianco B, et al.. Prevalence of cases of Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma urealyticum and Chlamydia trachomatis in women with no gynecologic complaints. Reprod Med Biol. 2012;11(4): 201–5. doi: 10.1007/s12522-012-0132-y
    1. Glehn MP, Ferreira LC, Da Silva HD, Machado ER. Prevalence of Trichomonas vaginalis and Candida albicans among Brazilian women of reproductive age. J Clin Diagn Res. 2016;10(11). doi: 10.7860/JCDR/2016/21325.8939
    1. Sarier M, Sepin ON, Guler H, Duman I, Yüksel Y, Tekin S, et al.. Prevalence of sexually transmitted disease in asymptomatic renal transplant recipients. Exp Clin Transplant. 2018;1: 1–5. doi: 10.6002/ect.2017.0232

Source: PubMed

3
S'abonner