Antimicrobial Effects of Potential Probiotics of Bacillus spp. Isolated from Human Microbiota: In Vitro and In Silico Methods

Alfonso Torres-Sánchez, Jesús Pardo-Cacho, Ana López-Moreno, Ángel Ruiz-Moreno, Klara Cerk, Margarita Aguilera, Alfonso Torres-Sánchez, Jesús Pardo-Cacho, Ana López-Moreno, Ángel Ruiz-Moreno, Klara Cerk, Margarita Aguilera

Abstract

The variable taxa components of human gut microbiota seem to have an enormous biotechnological potential that is not yet well explored. To investigate the usefulness and applications of its biocompounds and/or bioactive substances would have a dual impact, allowing us to better understand the ecology of these microbiota consortia and to obtain resources for extended uses. Our research team has obtained a catalogue of isolated and typified strains from microbiota showing resistance to dietary contaminants and obesogens. Special attention was paid to cultivable Bacillus species as potential next-generation probiotics (NGP) together with their antimicrobial production and ecological impacts. The objective of the present work focused on bioinformatic genome data mining and phenotypic analyses for antimicrobial production. In silico methods were applied over the phylogenetically closest type strain genomes of the microbiota Bacillus spp. isolates and standardized antimicrobial production procedures were used. The main results showed partial and complete gene identification and presence of polyketide (PK) clusters on the whole genome sequences (WGS) analysed. Moreover, specific antimicrobial effects against B. cereus, B. circulans, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Serratia marcescens, Klebsiella spp., Pseudomonas spp., and Salmonella spp. confirmed their capacity of antimicrobial production. In conclusion, Bacillus strains isolated from human gut microbiota and taxonomic group, resistant to Bisphenols as xenobiotics type endocrine disruptors, showed parallel PKS biosynthesis and a phenotypic antimicrobial effect. This could modulate the composition of human gut microbiota and therefore its functionalities, becoming a predominant group when high contaminant exposure conditions are present.

Keywords: Bacillus; antimicrobial effect; in silico methods; in vitro methods; probiotics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Conserved PKs proteins and functions in Bacillus modified from Straight et al. [37].
Figure 2
Figure 2
BPA relative percentage of degradation by human fecal specimens. (LC-MS/MS) system was used for BPA quantification; SN: Supernatant.
Figure 3
Figure 3
Phylogenetic tree based on gene sequences of isolated gut microbiota strains. The tree was obtained by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach and Kimura 2-parameter model. The species and strain names are shown. Bootstrap values shown after 1000 resamplings. Main clusters are highlighted: in green close to B.subtilis group and yellow close to B.cereus group.

References

    1. Casado V., Martín D., Torres C., Reglero G. Phospholipases in food industry: A review. Methods Mol. Biol. 2012;861:495–523.
    1. Moran K., de Lange C.F.M., Ferket P., Fellner V., Wilcock P., van Heugten E. Enzyme supplementation to improve the nutritional value of fibrous feed ingredients in swine diets fed in dry or liquid form. J. Anim. Sci. 2016;94:1031–1040. doi: 10.2527/jas.2015-9855.
    1. Lagier J.-C., Armougom F., Million M., Hugon P., Pagnier I., Robert C., Bittar F., Fournous G., Gimenez G., Maraninchi M., et al. Microbial culturomics: Paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 2012;18:1185–1193. doi: 10.1111/1469-0691.12023.
    1. López-Moreno A., Acuña I., Torres-Sánchez A., Ruiz-Moreno Á., Cerk K., Rivas A., Suárez A., Monteoliva-Sánchez M., Aguilera M. Next Generation Probiotics for Neutralizing Obesogenic Effects: Taxa Culturing Searching Strategies. Nutrients. 2021;13:1617. doi: 10.3390/nu13051617.
    1. Aguilera M., Gálvez-Ontiveros Y., Rivas A. Endobolome, a New Concept for Determining the Influence of Microbiota Disrupting Chemicals (MDC) in Relation to Specific Endocrine Pathogenesis. Front. Microbiol. 2020;11:578007. doi: 10.3389/fmicb.2020.578007.
    1. Adair K.L., Douglas A.E. Making a microbiome: The many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 2017;35:23–29. doi: 10.1016/j.mib.2016.11.002.
    1. Diakite A., Dubourg G., Dione N., Afouda P., Bellali S., Ngom I.I., Valles C., Million M., Levasseur A., Cadoret F., et al. Extensive culturomics of 8 healthy samples enhances metagenomics efficiency. PLoS ONE. 2019;14:e0223543. doi: 10.1371/journal.pone.0223543.
    1. WoldemariamYohannes K., Wan Z., Yu Q., Li H., Wei X., Liu Y., Wang J., Sun B. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens. J. Agric. Food Chem. 2020;68:14709–14727. doi: 10.1021/acs.jafc.0c06396.
    1. Konuray G., Erginkaya Z. Potential Use of Bacillus coagulans in the Food Industry. Foods. 2018;7:92. doi: 10.3390/foods7060092.
    1. Cutting S.M. Bacillus probiotics. Food Microbiol. 2011;28:214–220. doi: 10.1016/j.fm.2010.03.007.
    1. Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019;10:302. doi: 10.3389/fmicb.2019.00302.
    1. Garcia-Gutierrez E., Mayer M.J., Cotter P.D., Narbad A. Gut microbiota as a source of novel antimicrobials. Gut Microbes. 2019;10:1–21. doi: 10.1080/19490976.2018.1455790.
    1. Gao R., Zhu C., Li H., Yin M., Pan C., Huang L., Kong C., Wang X., Zhang Y., Qu S., et al. Dysbiosis Signatures of Gut Microbiota Along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. Obesity. 2018;26:351–361. doi: 10.1002/oby.22088.
    1. Armougom F., Henry M., Vialettes B., Raccah D., Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE. 2009;4:e7125. doi: 10.1371/journal.pone.0007125.
    1. Sedighi M., Razavi S., Navab-Moghadam F., Khamseh M.E., Alaei-Shahmiri F., Mehrtash A., Amirmozafari N. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb. Pathog. 2017;111:362–369. doi: 10.1016/j.micpath.2017.08.038.
    1. Ahmad A., Yang W., Chen G., Shafiq M., Javed S., Zaidi S.S.A., Shahid R., Liu C., Bokhari H. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS ONE. 2019;14:e0226372. doi: 10.1371/journal.pone.0226372.
    1. Ejtahed H.-S., Hoseini-Tavassol Z., Khatami S., Zangeneh M., Behrouzi A., Ahmadi Badi S., Moshiri A., Hasani-Ranjbar S., Soroush A.-R., Vaziri F., et al. Main gut bacterial composition differs between patients with type 1 and type 2 diabetes and non-diabetic adults. J. Diabetes Metab. Disord. 2020;19:265–271. doi: 10.1007/s40200-020-00502-7.
    1. Wang B., Jiang X., Cao M., Ge J., Bao Q., Tang L., Chen Y., Li L. Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease. Sci. Rep. 2016;6:32002. doi: 10.1038/srep32002.
    1. Li F., Sun G., Wang Z., Wu W., Guo H., Peng L., Wu L., Guo X., Yang Y. Characteristics of fecal microbiota in non-alcoholic fatty liver disease patients. Sci. China Life Sci. 2018;61:770–778. doi: 10.1007/s11427-017-9303-9.
    1. Raman M., Ahmed I., Gillevet P.M., Probert C.S., Ratcliffe N.M., Smith S., Greenwood R., Sikaroodi M., Lam V., Crotty P., et al. Fecal Microbiome and Volatile Organic Compound Metabolome in Obese Humans With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2013;11:868–875.e3. doi: 10.1016/j.cgh.2013.02.015.
    1. Nistal E., Sáenz de Miera L.E., Ballesteros Pomar M., Sánchez-Campos S., García-Mediavilla M.V., Álvarez-Cuenllas B., Linares P., Olcoz J.L., Arias-Loste M.T., García-Lobo J.M., et al. An altered fecal microbiota profile in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity. Rev. Española Enferm. Dig. 2019;111:275–282. doi: 10.17235/reed.2019.6068/2018.
    1. Lim M.Y., You H.J., Yoon H.S., Kwon B., Lee J.Y., Lee S., Song Y.-M., Lee K., Sung J., Ko G. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2017;66:1031–1038. doi: 10.1136/gutjnl-2015-311326.
    1. Vandenberg L.N., Hauser R., Marcus M., Olea N., Welshons W.V. Human exposure to bisphenol A (BPA) Reprod. Toxicol. 2007;24:139–177. doi: 10.1016/j.reprotox.2007.07.010.
    1. Vandenberg L.N., Chahoud I., Heindel J.J., Padmanabhan V., Paumgartten F.J.R., Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Cienc. Saude Coletiva. 2012;17:407–434. doi: 10.1590/S1413-81232012000200015.
    1. Louati I., Dammak M., Nasri R., Belbahri L., Nasri M., Abdelkafi S., Mechichi T. Biodegradation and detoxification of bisphenol A by bacteria isolated from desert soils. 3 Biotech. 2019;9:228. doi: 10.1007/s13205-019-1756-y.
    1. Gramec Skledar D., Peterlin Mašič L. Bisphenol A and its analogs: Do their metabolites have endocrine activity? Environ. Toxicol. Pharmacol. 2016;47:182–199. doi: 10.1016/j.etap.2016.09.014.
    1. Gálvez-Ontiveros Y., Moscoso-Ruiz I., Rodrigo L., Aguilera M., Rivas A., Zafra-Gómez A. Presence of parabens and bisphenols in food commonly consumed in spain. Foods. 2021;10:92. doi: 10.3390/foods10010092.
    1. Cohen I.C., Cohenour E.R., Harnett K.G., Schuh S.M. BPA, BPAF and TMBPF Alter Adipogenesis and Fat Accumulation in Human Mesenchymal Stem Cells, with Implications for Obesity. Int. J. Mol. Sci. 2021;22:5363. doi: 10.3390/ijms22105363.
    1. Camacho L., Lewis S.M., Vanlandingham M.M., Olson G.R., Davis K.J., Patton R.E., Twaddle N.C., Doerge D.R., Churchwell M.I., Bryant M.S., et al. A two-year toxicology study of bisphenol A (BPA) in Sprague-Dawley rats: CLARITY-BPA core study results. Food Chem. Toxicol. 2019;132:110728. doi: 10.1016/j.fct.2019.110728.
    1. Gundert-Remy U., Bodin J., Bosetti C., FitzGerald R., Hanberg A., Hass U., Hooijmans C., Rooney A.A., Rousselle C., van Loveren H., et al. Bisphenol A (BPA) hazard assessment protocol. EFSA Support. Publ. 2017;14:1354E.
    1. Gómez-Gallego C., Pohl S., Salminen S., De Vos W.M., Kneifel W. Akkermansia muciniphila: A novel functional microbe with probiotic properties. Benef. Microbes. 2016;7:571–584. doi: 10.3920/BM2016.0009.
    1. Brodmann T., Endo A., Gueimonde M., Vinderola G., Kneifel W., de Vos W.M., Salminen S., Gómez-Gallego C. Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union. Front. Microbiol. 2017;8:1725. doi: 10.3389/fmicb.2017.01725.
    1. Koutsoumanis K., Allende A., Alvarez-Ordóñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., Cesare A.D., Hilbert F., Lindqvist R., et al. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019) EFSA J. 2020;18:e05966.
    1. Bampidis V., Azimonti G., Bastos M.d.L., Christensen H., Dusemund B., Kouba M., Durjava M.F., López-Alonso M., Puente S.L., Marcon F., et al. Safety and efficacy of Bacillus subtilisPB6 (Bacillus velezensisATCC PTA-6737) as a feed additive for chickens for fattening, chickens reared for laying, minor poultry species (except for laying purposes), ornamental, sporting and game birds. EFSA J. 2020;18:e06280.
    1. Rychen G., Aquilina G., Azimonti G., Bampidis V., Bastos M.d.L., Bories G., Chesson A., Cocconcelli P.S., Flachowsky G., Gropp J., et al. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018;16:e05206.
    1. Aleti G., Sessitsch A., Brader G. Genome mining: Prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput. Struct. Biotechnol. J. 2015;13:192–203. doi: 10.1016/j.csbj.2015.03.003.
    1. Straight P.D., Fischbach M.A., Walsh C.T., Rudner D.Z., Kolter R. A singular enzymatic megacomplex from Bacillus subtilis. Proc. Natl. Acad. Sci. USA. 2007;104:305–310. doi: 10.1073/pnas.0609073103.
    1. García-Córcoles M.T., Cipa M., Rodríguez-Gómez R., Rivas A., Olea-Serrano F., Vílchez J.L., Zafra-Gómez A. Determination of bisphenols with estrogenic activity in plastic packaged baby food samples using solid-liquid extraction and clean-up with dispersive sorbents followed by gas chromatography tandem mass spectrometry analysis. Talanta. 2018;178:441–448. doi: 10.1016/j.talanta.2017.09.067.
    1. López-Moreno A., Torres-Sánchez A., Acuña I., Suárez A., Aguilera M. Representative Bacillus sp. AM1 from Gut Microbiota Harbor Versatile Molecular Pathways for Bisphenol A Biodegradation. Int. J. Mol. Sci. 2021;22:4952. doi: 10.3390/ijms22094952.
    1. Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755.
    1. Menasria T., Aguilera M., Hocine H., Benammar L., Ayachi A., Si Bachir A., Dekak A., Monteoliva-Sánchez M. Diversity and bioprospecting of extremely halophilic archaea isolated from Algerian arid and semi-arid wetland ecosystems for halophilic-active hydrolytic enzymes. Microbiol. Res. 2018;207:289–298. doi: 10.1016/j.micres.2017.12.011.
    1. Montalvo-Rodríguez R., Vreeland R.H., Oren A., Kessel M., Betancourt C., López-Garriga J. Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Pt 4Int. J. Syst. Bacteriol. 1998;48:1305–1312. doi: 10.1099/00207713-48-4-1305.
    1. Kasana R.C., Salwan R., Dhar H., Dutt S., Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr. Microbiol. 2008;57:503–507. doi: 10.1007/s00284-008-9276-8.
    1. Allais J.J., Hoyos-Lopez G., Kammoun S., Baratti J.C. Isolation and characterization of thermophilic bacterial strains with inulinase activity. Appl. Environ. Microbiol. 1987;53:942–945. doi: 10.1128/aem.53.5.942-945.1987.
    1. Sierra G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek. 1957;23:15–22. doi: 10.1007/BF02545855.
    1. Jeffries C.D., Holtman D.F., Guse D.G. Rapid method for determining the activity of microorganisms on nucleic acids. J. Bacteriol. 1957;73:590–591. doi: 10.1128/jb.73.4.590-591.1957.
    1. Combined Compendium of Food Additive Specifications. [(accessed on 24 June 2021)]; Available online: .
    1. Powthong P., Suntornthiticharoen P. Antimicrobial and enzyme activity produced by Bacillus spp. Isolated from soil. Int. J. Pharm. Pharm. Sci. 2017;9:205–210. doi: 10.22159/ijpps.2017v9i3.13895.
    1. Rangwala S.H., Kuznetsov A., Ananiev V., Asztalos A., Borodin E., Evgeniev V., Joukov V., Lotov V., Pannu R., Rudnev D., et al. Accessing NCBI data using the NCBI Sequence Viewer and Genome Data Viewer (GDV) Genome Res. 2020;31:159–169. doi: 10.1101/gr.266932.120.
    1. Yu K., Yi S., Li B., Guo F., Peng X., Wang Z., Wu Y., Alvarez-Cohen L., Zhang T. An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. Microbiome. 2019;7:16. doi: 10.1186/s40168-019-0634-5.
    1. Jiménez-Pranteda M.L., Pérez-Davó A., Monteoliva-Sánchez M., Ramos-Cormenzana A., Aguilera M. Food Omics Validation: Towards Understanding Key Features for Gut Microbiota, Probiotics and Human Health. Food Anal. Methods. 2015;8:272–289. doi: 10.1007/s12161-014-9923-6.
    1. O’Toole P.W., Marchesi J.R., Hill C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2017;2:17057. doi: 10.1038/nmicrobiol.2017.57.
    1. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110.
    1. Cani P.D., de Vos W.M. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front. Microbiol. 2017;8:1765. doi: 10.3389/fmicb.2017.01765.
    1. Szlufman C., Shemesh M. Role of Probiotic Bacilli in Developing Synbiotic Food: Challenges and Opportunities. Front. Microbiol. 2021;12:811. doi: 10.3389/fmicb.2021.638830.
    1. Khalid F., Khalid A., Fu Y., Hu Q., Zheng Y., Khan S., Wang Z. Potential of Bacillus velezensis as a probiotic in animal feed: A review. J. Microbiol. 2021;59:627–633. doi: 10.1007/s12275-021-1161-1.
    1. Sultana O., Lee S., Seo H., Mahmud H.A., Kim S., Seo A., Kim M., Song H.-Y. Biodegradation and removal of PAH by Bacillus velezensis isolated from fermented food. J. Microbiol. Biotechnol. 2021;31 doi: 10.4014/jmb.2104.04023.
    1. Kang M., Choi H.J., Yun B., Lee J., Yoo J., Yang H.-J., Jeong D.-Y., Kim Y., Oh S. Bacillus amyloliquefaciens SCGB1 Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice Through Immune Regulation. J. Med. Food. 2021;24:709–719. doi: 10.1089/jmf.2021.K.0044.
    1. Harwood C.R., Mouillon J.-M., Pohl S., Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev. 2018;42:721–738. doi: 10.1093/femsre/fuy028.
    1. Bianco A., Capozzi L., Monno M.R., Del Sambro L., Manzulli V., Pesole G., Loconsole D., Parisi A. Characterization of Bacillus cereus Group Isolates From Human Bacteremia by Whole-Genome Sequencing. Front. Microbiol. 2021;11:599524. doi: 10.3389/fmicb.2020.599524.
    1. Devaraj K., Aathika S., Periyasamy K., Periyaraman P.M., Palaniyandi S., Subramanian S. Production of thermostable multiple enzymes from Bacillus amyloliquefaciens KUB29. Nat. Prod. Res. 2019;33:1674–1677. doi: 10.1080/14786419.2018.1425857.
    1. Deb P., Talukdar S.A., Mohsina K., Sarker P.K., Sayem S.A. Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus. 2013;2:154. doi: 10.1186/2193-1801-2-154.
    1. Latorre J.D., Hernandez-Velasco X., Wolfenden R.E., Vicente J.L., Wolfenden A.D., Menconi A., Bielke L.R., Hargis B.M., Tellez G. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry. Front. Vet. Sci. 2016;3:95. doi: 10.3389/fvets.2016.00095.
    1. Chakraborty K., Thilakan B., Kizhakkekalam V.K. Antibacterial aryl-crowned polyketide from Bacillus subtilis associated with seaweed Anthophycus longifolius. J. Appl. Microbiol. 2018;124:108–125. doi: 10.1111/jam.13627.
    1. Piel J., Butzke D., Fusetani N., Hui D., Platzer M., Wen G., Matsunaga S. Exploring the Chemistry of Uncultivated Bacterial Symbionts: Antitumor Polyketides of the Pederin Family. J. Nat. Prod. 2005;68:472–479. doi: 10.1021/np049612d.
    1. Angelakis E. Weight gain by gut microbiota manipulation in productive animals. Microb. Pathog. 2017;106:162–170. doi: 10.1016/j.micpath.2016.11.002.
    1. Hoover D.G., Harlander S.K. CHAPTER 2—Screening Methods for Detecting Bacteriocin Activity. In: Hoover D.G., Steenson L.R., editors. Bacteriocins of Lactic Acid Bacteria. Academic Press; Cambridge, MA, USA: 1993. pp. 23–39.
    1. Tang G.-L., Cheng Y.-Q., Shen B. Leinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem. Biol. 2004;11:33–45. doi: 10.1016/j.chembiol.2003.12.014.
    1. Huang X.-W., Niu Q.-H., Zhou W., Zhang K.-Q. Bacillus nematocida sp. nov., a novel bacterial strain with nematotoxic activity isolated from soil in Yunnan, China. Syst. Appl. Microbiol. 2005;28:323–327. doi: 10.1016/j.syapm.2005.01.008.
    1. EFSA (European Food Safety Authority) Statement on the Requirements for Whole Genome Sequence Analysis of Microorganisms Intentionally Used in the Food Chain, 2021. [(accessed on 30 May 2021)]; Available online: .
    1. Swann J.R., Rajilic-Stojanovic M., Salonen A., Sakwinska O., Gill C., Meynier A., Fança-Berthon P., Schelkle B., Segata N., Shortt C., et al. Considerations for the design and conduct of human gut microbiota intervention studies relating to foods. Eur. J. Nutr. 2020;59:3347–3368. doi: 10.1007/s00394-020-02232-1.
    1. Silva D.R., Sardi J.d.C.O., Pitangui N.d.S., Roque S.M., Silva A.C.B.d., Rosalen P.L. Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J. Funct. Foods. 2020;73:104080. doi: 10.1016/j.jff.2020.104080.
    1. World Health Organization . Critically Important Antimicrobials for Human Medicine: Ranking of Antimicrobial Agents for Risk Management of Antimicrobial Resistance Due to Non-Human Use. World Health Organization; Geneva, Switzerland: 2017. WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance.

Source: PubMed

3
S'abonner