Quinoline-Based Hybrid Compounds with Antimalarial Activity

Xhamla Nqoro, Naki Tobeka, Blessing A Aderibigbe, Xhamla Nqoro, Naki Tobeka, Blessing A Aderibigbe

Abstract

The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.

Keywords: 4-aminoquinoline; 8-aminoquinoline; hybrid compound; infectious disease; malaria.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Examples of antimalarials classified based on their activity against malaria life stage.
Figure 2
Figure 2
Examples of antimalarials classified based on their structure.
Figure 3
Figure 3
Quinoline-artemisinin hybrids.
Figure 4
Figure 4
Quinoline-ferrocene hybrid compounds.
Figure 4
Figure 4
Quinoline-ferrocene hybrid compounds.
Figure 5
Figure 5
Quinoline-trioxolanes hybrid compounds.
Figure 6
Figure 6
Hybrid compounds containing quinoline derivatives and antibacterial agents.
Figure 7
Figure 7
Quinoline-pyrimidine hybrid compounds.
Figure 8
Figure 8
Quinoline-sulfonamide hybrids.
Figure 9
Figure 9
Hybrid compounds containing quinoline and other ring systems.

References

    1. Reddy P.L., Khan S.I., Ponnan P., Tripathi M., Rawat D.S. Synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. Eur. J. Med. Chem. 2017;126:675–686. doi: 10.1016/j.ejmech.2016.11.057.
    1. Maurya S.S., Khan S.I., Bahuguna A., Kumar D., Rawat D.S. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur. J. Med. Chem. 2017;129:175–185. doi: 10.1016/j.ejmech.2017.02.024.
    1. Singh A., Gut J., Rosenthal P.J., Kumar V. 4-Aminoquinoline-ferrocenyl-chalcone conjugates: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem. 2017;125:269–277. doi: 10.1016/j.ejmech.2016.09.044.
    1. Jones R.A., Panda S.S., Hall C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem. 2015;97:335–355. doi: 10.1016/j.ejmech.2015.02.002.
    1. Murugan K., Raichurkar A.V., Rahman F., Khan N., Iyer P.S. Synthesis and in vitro evaluation of novel 8-aminoquinoline—Pyrazolopyrimidine hybrids as potent antimalarial agents. Bioorg. Med. Chem. Lett. 2015;25:1100–1103.
    1. White N.J., Pukrittayakamee S., Hien T.T., Faiz M.A., Mokuolu O.A., Dondorp A.M. Malaria. Lancet. 2014;383:723–735. doi: 10.1016/S0140-6736(13)60024-0.
    1. Raj R., Land K.M., Kumar V. 4-Aminoquinoline-hybridization en route towards the development of rationally designed antimalarial agents. RSC Adv. 2015;5:82676–82698. doi: 10.1039/C5RA16361G.
    1. Singh S., Agarwal D., Sharma K., Sharma M., Nielsen M.A., Alifrangis M., Singh A.K., Gupta R.D., Awasthi S.K. 4-Aminoquinoline derivatives: Synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites. Eur. J. Med. Chem. 2016;122:394–407. doi: 10.1016/j.ejmech.2016.06.033.
    1. De Oliveira Pedrosa M., da Cruz D., Marques R., Viana O., de Moura R.O., Ishiki H.M., Barbosa F., Maria J., Diniz M.F., Scotti M.T., et al. Hybrid Compounds as Direct Multitarget Ligands: A Review. Curr. Top. Med. Chem. 2017;17:1044–1079. doi: 10.2174/1568026616666160927160620.
    1. Antimalarial Drugs. [(accessed on 16 October 2017)]; Available online: .
    1. Sevene E., González R., Menéndez C. Current knowledge and challenges of antimalarial drugs for treatment and prevention in pregnancy. Expert Opin. Pharmacother. 2010;11:1277–1293. doi: 10.1517/14656561003733599.
    1. Classification of Antimalarial Drugs. [(accessed on 16 October 2017)]; Available online: .
    1. Chinappi M., Via A., Marcatili P., Tramontano A. On the mechanism of chloroquine resistance in Plasmodium falciparum. PLoS ONE. 2010;5:e14064. doi: 10.1371/journal.pone.0014064.
    1. Krogstad D.J., Gluzman I.Y., Kyle D.E., Oduola A.M.J., Martin S.K., Milhous W.K. Schlesinger PHEfflux of chloroquine from Plasmodium falciparum: Mechanism of chloroquine resistance. Science. 1987;238:1283–1285. doi: 10.1126/science.3317830.
    1. Bray P.G., Janneh O., Ward S.A. Chloroquine uptake and activity is determined by binding to ferriprotoporphyrin IX in Plasmodium falciparum. Novartis Found. Symp. 1999;226:252–264.
    1. Cooper R.A., Hartwig C.L., Ferdig M.T. pfcrt is more than the Plasmodium falciparum chloroquine resistance gene: A functional and evolutionary perspective. Acta Trop. 2005;94:170–180. doi: 10.1016/j.actatropica.2005.04.004.
    1. Mbengue A., Bhattacharjee S., Pandharkar T., Liu H., Estiu G., Stahelin R.V., Rizk S.S., Njimoh D.L., Ryan Y., Chotivanich K., et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015;520:683–687. doi: 10.1038/nature14412.
    1. Dassonville-Klimpt A., Jonet A., Pillon M., Mullié C., Sonnet P. Mefloquine derivatives: Synthesis, mechanisms of action, antimicrobial activities. In: Méndez-Vilas A., editor. Science against Microbial Pathogens: Communicating Current Research and Technological Advances. Volume 3. Formatex Publishers; Badarjoz, Spain: 2011. pp. 23–35.
    1. Price R.N., Nosten F., Luxemburger C., Kham A., Brockman A., Chongsuphajaisiddhi T., White N.J. Artesunate versus artemether in combination with mefloquine for the treatment of multidrug-resistant falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 1995;89:523–527. doi: 10.1016/0035-9203(95)90094-2.
    1. Akhoon B.A., Singh K.P., Varshney M., Gupta S.K., Shukla Y., Gupta S.K. Understanding the mechanism of atovaquone drug resistance in Plasmodium falciparum cytochrome b mutation Y268S using computational methods. PLoS ONE. 2014;9:e110041. doi: 10.1371/journal.pone.0110041.
    1. Sirichaiwat C., Intaraudom C., Kamchonwongpaisan S., Vanichtanankul J., Thebtaranonth Y., Yuthavong Y. Target guided synthesis of 5-benzyl-2,4-diamonopyrimidines: Their antimalarial activities and binding affinities to wild type and mutant dihydrofolate reductases from Plasmodium falciparum. J. Med. Chem. 2004;47:345–354. doi: 10.1021/jm0303352.
    1. Vinayak S., Alam M.T., Mixson-Hayden T., McCollum A.M., Sem R., Shah N.K., Lim P., Muth S., Rogers W.O., Fandeur T., et al. Origin and evolution of sulfadoxine resistant Plasmodium falciparum. PLoS Pathog. 2010;6:e1000830. doi: 10.1371/journal.ppat.1000830.
    1. Bloland P.B. Drug Resistance in Malaria. World Health Organization; Geneva, Switzerland: 2001.
    1. White N. Antimalarial drug resistance and combination chemotherapy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999;354:739–749. doi: 10.1098/rstb.1999.0426.
    1. Lödige M., Hiersch L. Design and synthesis of novel hybrid molecules against malaria. Int. J. Med. Chem. 2015;2015:458319. doi: 10.1155/2015/458319.
    1. Muregi F.W., Ishih A. Next-generation antimalarial drugs: Hybrid molecules as a new strategy in drug design. Drug Dev. Res. 2010;71:20–32. doi: 10.1002/ddr.20345.
    1. Wang N., Wicht K.J., Shaban E., Ngoc T.A., Wang M.Q., Hayashi I., Hossain M.I., Takemasa Y., Kaiser M., El Sayed I.E., et al. Synthesis and evaluation of artesunate–indoloquinoline hybrids as antimalarial drug candidates. MedChemComm. 2014;5:927–931. doi: 10.1039/C4MD00091A.
    1. Lombard M.C., N’Da D.D., Breytenbach J.C., Kolesnikova N.I., Van Ba C.T., Wein S., Norman J., Denti P., Vial H., Wiesner L. Antimalarial and anticancer activities of artemisinin–quinoline hybrid-dimers and pharmacokinetic properties in mice. Eur. J. Pharm. Sci. 2012;47:834–841. doi: 10.1016/j.ejps.2012.09.019.
    1. Walsh J.J., Coughlan D., Heneghan N., Gaynor C., Bell A. A novel artemisinin–quinine hybrid with potent antimalarial activity. Bioorg. Med. Chem. Lett. 2007;17:3599–3602. doi: 10.1016/j.bmcl.2007.04.054.
    1. Lombard M.C., N’Da D.D., Breytenbach J.C., Smith P.J., Lategan C.A. Synthesis, in vitro antimalarial and cytotoxicity of artemisinin-aminoquinoline hybrids. Bioorg. Med. Chem. Lett. 2011;21:1683–1686. doi: 10.1016/j.bmcl.2011.01.103.
    1. Lombard M.C., N’Da D.D., Van Ba C.T., Wein S., Norman J., Wiesner L., Vial H. Potent in vivo anti-malarial activity and representative snapshot pharmacokinetic evaluation of artemisinin-quinoline hybrids. Malar. J. 2013;12:71. doi: 10.1186/1475-2875-12-71.
    1. Capela R., Cabal G.G., Rosenthal P.J., Gut J., Mota M.M., Moreira R., Lopes F., Prudêncio M. Design and evaluation of primaquine-artemisinin hybrids as a multistage antimalarial strategy. Antimicrob. Agents Chemother. 2011;55:4698–4706. doi: 10.1128/AAC.05133-11.
    1. Barends M., Jaidee A., Khaohirun N., Singhasivanon P., Nosten F. In vitro activity of ferroquine (SSR 97193) against Plasmodium falciparum isolates from the Thai-Burmese border. Malar. J. 2007;6:81. doi: 10.1186/1475-2875-6-81.
    1. Biot C., Taramelli D., Forfar-Bares I., Maciejewski L., Boyce M., Nowogrocki G., Brocard J., Basilico N., Olliaro P., Egan T.J. Insights into the mechansims of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol. Pharm. 2005;2:185–193.
    1. Domarle O., Blampain G., Agnaniet H., Nzadiyabi T., Lebibi J., Brocard J., Maciejewski L., Biot C., Georges A.J., Millet P. In vitro antimalarial activity of a new organometallic analog, ferrocene-chloroquine. Antimicrob. Agents Chem. 1998;42:540–544.
    1. Biot C., Dessolin J., Ricard I., Dive D. Easily synthesized antimalarial ferrocene triazacyclononane quinoline conjugates. J. Organomet. Chem. 2004;689:4678–4682. doi: 10.1016/j.jorganchem.2004.04.036.
    1. N’Da D.D., Smith P.J. Synthesis, in vitro antiplasmodial and antiproliferative activities of a series of quinoline–ferrocene hybrids. Med. Chem. Res. 2014;23:1214–1224. doi: 10.1007/s00044-013-0748-4.
    1. Biot C., Daher W., Chavain N., Fandeur T., Khalife J., Dive D., De Clercq E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem. 2006;49:2845. doi: 10.1021/jm0601856.
    1. Biot C., Pradines B., Sergeant M.H., Gut J., Rosenthal P.J., Chibale K. Design, synthesis, and antimalarial activity of structural chimeras of thiosemicarbazone and ferroquine analogues. Bioorg. Med. Chem. Lett. 2007;17:6434–6438. doi: 10.1016/j.bmcl.2007.10.003.
    1. Chavain N., Davioud-Charvet E., Trivelli X., Mbeki L., Rottmann M., Brun R., Biot C. Antimalarial activities of ferroquine conjugates with either glutathione reductase inhibitors or glutathione depletors via a hydrolyzable amide linker. Bioorg. Med. Chem. 2009;17:8048–8059. doi: 10.1016/j.bmc.2009.10.008.
    1. Bellot F., Coslédan F., Vendier L., Brocard J., Meunier B., Robert A. Trioxaferroquines as new hybrid antimalarial drugs. J. Med. Chem. 2010;53:4103–4109. doi: 10.1021/jm100117e.
    1. Herrmann C., Salas P.F., Cawthray J.F., de Kock C., Patrick B.O., Smith P.J., Adam M.J., Orvig C. 1,1′-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarials. Organometallics. 2012;31:5736–5747. doi: 10.1021/om300354x.
    1. Herrmann C., Salas P.F., Patrick B.O., Kock C.D., Smith P.J., Adam M.J., Orvig C. Modular synthesis of 1,2- and 1,1′-disubstituted ferrocenyl carbohydrate chloroquine and mefloquine conjugates as potential antimalarial agents. Organometallics. 2012;31:5748–5759. doi: 10.1021/om300392q.
    1. Salas P.F., Herrmann C., Cawthray J.F., Nimphius C., Kenkel A., Chen J., de Kock C., Smithm P.J., Patrick B.O., Adam M.J., et al. Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms. J. Med. Chem. 2013;56:1596–1613. doi: 10.1021/jm301422h.
    1. Biot C., Nosten F., Fraisse L., Ter-Minassian D., Khalife J., Dive D. The antimalarial ferroquine: From bench to clinic. Parasite. 2011;18:207–214. doi: 10.1051/parasite/2011183207.
    1. David D.N., Breytenbach J.C., Smith P.J., Lategan C. Synthesis and in vitro antiplasmodial activity of quinoline-ferrocene esters. Arzneimittelforschung. 2011;61:358–365.
    1. Araújo N.C., Barton V., Jones M., Stocks P.A., Ward S.A., Davies J., Bray P.G., Shone A.E., Cristiano M.L., O’Neill P.M. Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: Synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates. Bioorg. Med. Chem. Lett. 2009;19:2038–2043. doi: 10.1016/j.bmcl.2009.02.013.
    1. Meunier B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res. 2007;41:69–77. doi: 10.1021/ar7000843.
    1. Bousejra-El Garah F., Claparols C., Benoit-Vical F., Meunier B., Robert A. The antimalarial trioxaquine DU1301 alkylates heme in malaria-infected mice. Antimicrob. Agents Chem. 2008;52:2966–2969. doi: 10.1128/AAC.00165-08.
    1. Miranda D., Capela R., Albuquerque I.S., Meireles P., Paiva I., Nogueira F., Amewu R., Gut J., Rosenthal P.J., Oliveira R., et al. Novel endoperoxide-based transmission-blocking antimalarials with liver-and blood-schizontocidal activities. ACS Med. Chem. Lett. 2014;5:108. doi: 10.1021/ml4002985.
    1. Pérez B., Teixeira C., Gut J., Rosenthal P.J., Gomes J.R., Gomes P. Cinnamic Acid/Chloroquinoline Conjugates as Potent Agents against Chloroquine-Resistant Plasmodium falciparum. Chem. Med. Chem. 2012;7:1537–1540. doi: 10.1002/cmdc.201200257.
    1. Yardley S.C., Keller-Maerki S., Rottmann M., Brun R., Coletta M., Marini S., Guiso G., Caccia S., Fattorusso C. Combining 4-aminoquinoline-and clotrimazole-based pharmacophores toward innovative and potent hybrid antimalarials. J. Med. Chem. 2009;52:502–513.
    1. Gemma S., Camodeca C., Coccone S.S., Joshi B.P., Bernetti M., Moretti V., Brogi S., Bonache de Marcos M.C., Savini L., Taramelli D., et al. Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: Further structure–activity relationships, in vivo studies, and preliminary toxicity profiling. J. Med. Chem. 2012;5:6948–6967. doi: 10.1021/jm300802s.
    1. Panda S.S., Bajaj K., Meyers M.J., Sverdrup F.M., Katritzky A.R. Quinine bis-conjugates with quinolone antibiotics and peptides: Synthesis and antimalarial bioassay. Org. Biomol. Chem. 2012;10:8985–8993. doi: 10.1039/c2ob26439k.
    1. Pérez B.C., Teixeira C., Figueiras M., Gut J., Rosenthal P.J., Gomes J.R., Gomes P. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: Towards the development of potential dual action antimalarials. Eur. J. Med. Chem. 2012;54:887–899. doi: 10.1016/j.ejmech.2012.05.022.
    1. Pérez B.C., Teixeira C., Albuquerque I.S., Gut J., Rosenthal P.J., Gomes J.R., Prudêncio M., Gomes P. N-Cinnamoylated chloroquine analogues as dual-stage antimalarial leads. J. Med. Chem. 2013;56:556–567. doi: 10.1021/jm301654b.
    1. Singh P., Singh P., Kumar M., Gut J., Rosenthal P.J., Kumar K., Kumar V., Mahajan M.P., Bisetty K. Synthesis, docking and in vitro antimalarial evaluation of bifunctional hybrids derived from β-lactams and 7-chloroquinoline using click chemistry. Bioorg. Med. Chem. Lett. 2012;22:57–61. doi: 10.1016/j.bmcl.2011.11.082.
    1. Raj R., Biot C., Carrère-Kremer S., Kremer L., Guérardel Y., Gut J., Rosenthal P.J., Kumar V. 4-Aminoquinoline-β-Lactam Conjugates: Synthesis, Antimalarial, and Antitubercular Evaluation. Chem. Biol. Drug Des. 2014;83:191–197. doi: 10.1111/cbdd.12225.
    1. Singh P., Raj R., Singh P., Gut J., Rosenthal P.J., Kumar V. Urea/oxalamide tethered β-lactam-7-chloroquinoline conjugates: Synthesis and in vitro antimalarial evaluation. Eur. J. Med. Chem. 2014;71:128–134. doi: 10.1016/j.ejmech.2013.10.079.
    1. Bellotti de Souza N., Carvalhaes R., Maria Lino do Carmo A., Jose Martins Alves M., Soares Coimbra E., Maria Neumann Cupolilo S., Abramo C., David Da Silva A. Synthesis and In Vivo Antimalarial Activity of Quinoline/Mercaptopurine Conjugates. Lett. Drug. Des. Discov. 2012;9:361–366. doi: 10.2174/157018012799859990.
    1. Tripathi M., Khan S.I., Ponnan P., Kholiya R., Rawat D.S. Aminoquinoline-Pyrimidine-Modified Anilines: Synthesis, In Vitro Antiplasmodial Activity, Cytotoxicity, Mechanistic Studies and ADME Predictions. ChemistrySelect. 2017;2:9074–9083. doi: 10.1002/slct.201701558.
    1. Manohar S., Rajesh U.C., Khan S.I., Tekwani B.L., Rawat D.S. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med. Chem. Lett. 2012;3:555–559. doi: 10.1021/ml3000808.
    1. Kumar D., Khan S.I., Tekwani B.L., Ponnan P., Rawat D.S. 4-Aminoquinoline-Pyrimidine hybrids: Synthesis, antimalarial activity, heme binding and docking studies. Eur. J. Med. Chem. 2015;89:490–502. doi: 10.1016/j.ejmech.2014.10.061.
    1. Kumar D., Khan S.I., Tekwani B.L., Ponnan P., Rawat D.S. Synthesis, antimalarial activity, heme binding and docking studies of 4-aminoquinoline–pyrimidine based molecular hybrids. RSC Adv. 2014;4:63655–63669. doi: 10.1039/C4RA09768H.
    1. Shah R.B., Valand N.N., Sutariya P.G., Menon S.K. Design, synthesis and characterization of quinoline–pyrimidine linked calix [4] arene scaffolds as anti-malarial agents. J. Incl. Phenom. Macrocycl. Chem. 2016;84:173–178. doi: 10.1007/s10847-015-0581-0.
    1. Kaur H., Balzarini J., de Kock C., Smith P.J., Chibale K., Singh K. Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur. J. Med. Chem. 2015;101:52–62. doi: 10.1016/j.ejmech.2015.06.024.
    1. Thakur A., Khan S.I., Rawat D.S. Synthesis of piperazine tethered 4-aminoquinoline-pyrimidine hybrids as potent antimalarial agents. RSC Adv. 2014;4:20729–20736. doi: 10.1039/C4RA02276A.
    1. Singh K., Kaur H., Chibale K., Balzarini J., Little S., Bharatam P.V. 2-aminopyrimidine based 4-aminoquinoline anti-plasmodial agents. Synthesis, biological activity, structure–activity relationship and mode of action studies. Eur. J. Med. Chem. 2012;52:82–97. doi: 10.1016/j.ejmech.2012.03.007.
    1. Pretorius S.I., Breytenbach W.J., De Kock C., Smith P.J., N’Da D.D. Synthesis, characterization and antimalarial activity of quinoline–pyrimidine hybrids. Bioorg. Med. Chem. 2013;21:269–277. doi: 10.1016/j.bmc.2012.10.019.
    1. Pinheiro L.C., Boechat N., Maria de Lourdes G.F., Júnior C.C., Jesus A.M., Leite M.M., Souza N.B., Krettli A.U. Anti-Plasmodium falciparum activity of quinoline–sulfonamide hybrids. Bioorg. Med. Chem. 2015;23:5979–5984. doi: 10.1016/j.bmc.2015.06.056.
    1. Verma S., Pandey S., Agarwal P., Verma P., Deshpande S., Saxena J.K., Srivastava K., Chauhan P.M., Prabhakar Y.S. N-(7-Chloroquinolinyl-4-aminoalkyl) arylsulfonamides as antimalarial agents: Rationale for the activity with reference to inhibition of hemozoin formation. RSC Adv. 2016;6:25584–25593. doi: 10.1039/C6RA00846A.
    1. Soares R.R., da Silva J.M., Carlos B.C., da Fonseca C.C., de Souza L.S., Lopes F.V., de Paula Dias R.M., Moreira P.O., Abramo C., Viana G.H., et al. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett. 2015;25:2308–2313. doi: 10.1016/j.bmcl.2015.04.014.
    1. Fisher G.M., Tanpure R.P., Douchez A., Andrews K.T., Poulsen S.A. Synthesis and Evaluation of Antimalarial Properties of Novel 4-Aminoquinoline Hybrid Compounds. Chem. Biol. Drug Des. 2014;84:462–472. doi: 10.1111/cbdd.12335.
    1. Salahuddin A., Inam A., van Zyl R.L., Heslop D.C., Chen C.T., Avecilla F., Agarwal S.M., Azam A. Synthesis and evaluation of 7-chloro-4-(piperazin-1-yl) quinoline-sulfonamide as hybrid antiprotozoal agents. Bioorg. Med. Chem. 2013;21:3080–3089. doi: 10.1016/j.bmc.2013.03.052.
    1. Njogu P.M., Gut J., Rosenthal P.J., Chibale K. Design, Synthesis, and Antiplasmodial Activity of Hybrid Compounds Based on (2R,3S)-N-Benzoyl-3-phenylisoserine. ACS Med. Chem. Lett. 2014;4:637–641. doi: 10.1021/ml400164t.
    1. Andayi W.A., Egan T.J., Gut J., Rosenthal P.J., Chibale K. Synthesis, Antiplasmodial Activity, and β-Hematin Inhibition of Hydroxypyridone–Chloroquine Hybrids. ACS Med. Chem. Lett. 2013;4:642–646. doi: 10.1021/ml4001084.
    1. Kashyap A., Chetia D., Rudrapal M. Synthesis, Antimalarial Activity Evaluation and Drug likeness Study of Some New Quinoline-Lawsone Hybrids. Ind. J. Pharm. Sci. 2017;78:801–809. doi: 10.4172/pharmaceutical-sciences.1000186.
    1. Singh B., Chetia D., Puri S.K., Srivastava K., Prakash A. Synthesis and in vitro and in vivo antimalarial activity of novel 4-anilinoquinoline Mannich base derivatives. Med. Chem. Res. 2011;20:1523–1529. doi: 10.1007/s00044-010-9397-z.
    1. Inam A., Van Zyl R.L., van Vuuren N.J., Chen C.T., Avecilla F., Agarwal S.M., Azam A. Chloroquinoline–acetamide hybrids: A promising series of potential antiprotozoal agents. RSC Adv. 2015;5:48368–48381. doi: 10.1039/C5RA05472A.
    1. Joubert J., Fortuin E.E., Taylor D., Smith P.J., Malan S.F. Pentacycloundecylamines and conjugates thereof as chemosensitizers and reversed chloroquine agents. Bioorg. Med. Chem. Lett. 2014;24:5516–5519. doi: 10.1016/j.bmcl.2014.09.088.
    1. Burgess S.J., Selzer A., Kelly J.X., Smilkstein M.J., Riscoe M.K., Peyton D.H. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. J. Med. Chem. 2006;49:5623–5625. doi: 10.1021/jm060399n.
    1. Andrews S., Burgess S.J., Skaalrud D., Kelly J.X., Peyton D.H. Reversal agent and linker variants of reversed chloroquines: Activities against Plasmodium falciparum. J. Med. Chem. 2009;53:916–919. doi: 10.1021/jm900972u.
    1. Ribeiro C.J., Kumar S.P., Gut J., Goncalves L.M., Rosenthal P.J., Moreira R., Santos M.M. Squaric acid/4-aminoquinoline conjugates: Novel potent antiplasmodial agents. Eur. J. Med. Chem. 2013;69:365–372. doi: 10.1016/j.ejmech.2013.08.037.
    1. Sparatore A., Basilico N., Parapini S., Romeo S., Novelli F., Sparatore F., Taramelli D. 4-Aminoquinoline quinolizidinyl-and quinolizidinylalkyl-derivatives with antimalarial activity. Bioorg. Med. Chem. 2005;13:5338–5345. doi: 10.1016/j.bmc.2005.06.047.
    1. Solomon V.R., Haq W., Srivastava K., Puri S.K., Katti S.B. Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. J. Med. Chem. 2007;50:394–398. doi: 10.1021/jm061002i.
    1. Khan M.F., Levi M.S., Tekwani B.L., Wilson N.H., Borne R.F. Synthesis of isoquinuclidine analogs of chloroquine: Antimalarial and antileishmanial activity. Bioorg. Med. Chem. 2007;15:3919–3925. doi: 10.1016/j.bmc.2006.11.024.
    1. Cornut D., Lemoine H., Kanishchev O., Okada E., Albrieux F., Beavogui A.H., Bienvenu A.L., Picot S., Bouillon J.P., Médebielle M. Incorporation of a 3-(2,2,2-trifluoroethyl)-γ-hydroxy-γ-lactam motif in the side chain of 4-aminoquinolines. Syntheses and antimalarial activities. J. Med. Chem. 2013;56:73–83. doi: 10.1021/jm301076q.
    1. Sunduru N., Sharma M., Srivastava K., Rajakumar S., Puri S.K., Saxena J.K., Chauhan P.M. Synthesis of oxalamide and triazine derivatives as a novel class of hybrid 4-aminoquinoline with potent antiplasmodial activity. Bioorg. Med. Chem. 2009;17:6451–6462. doi: 10.1016/j.bmc.2009.05.075.
    1. Musonda C.C., Gut J., Rosenthal P.J., Yardley V., De Souza R.C., Chibale K. Application of multicomponent reactions to antimalarial drug discovery. Part 2: New antiplasmodial and antitrypanosomal 4-aminoquinoline γ- and δ-lactams via a ‘catch and release’ protocol. Bioorg. Med. Chem. 2006;14:5605–5615. doi: 10.1016/j.bmc.2006.04.035.
    1. Cunico W., Cechinel C.A., Bonacorso H.G., Martins M.A., Zanatta N., de Souza M.V., Freitas I.O., Soares R.P., Krettli A.U. Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues. Bioorg. Med. Chem. Lett. 2006;16:649–653. doi: 10.1016/j.bmcl.2005.10.033.
    1. Zhang M., Wilkinson B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol. 2007;18:478–488. doi: 10.1016/j.copbio.2007.10.005.
    1. Doak B.C., Kihlberg J. Drug discovery beyond the rule of 5-Opportunities and challenges. Expert Opin. Drug Discov. 2017;12:115–119. doi: 10.1080/17460441.2017.1264385.
    1. Sharma D., Chetia D., Rudrapal M. Design, synthesis and antimalarial activity of some new 2-hydroxy-1, 4-naphthoquinone-4-hydroxyaniline hybrid mannich bases. Asian J. Chem. 2016;28:782–788. doi: 10.14233/ajchem.2016.19478.
    1. Rojas F.A., Kouznetsov V.V. Property-based design and synthesis of new chloroquine hybrids via simple incorporation of 2-imino-thiazolidin-4-one or 1h-pyrrol-2,5-dione fragments on the 4-amino-7-chloroquinoline side chain. J. Braz. Chem. Soc. 2011;22:1774–1781. doi: 10.1590/S0103-50532011000900021.
    1. Kumar D., Khan S.I., Ponnan P., Rawat D.S. Triazine–pyrimidine based molecular hybrids: Synthesis, docking studies and evaluation of antimalarial activity. New J. Chem. 2014;38:5087–5095. doi: 10.1039/C4NJ00978A.

Source: PubMed

3
S'abonner