Assessment of Biventricular Myocardial Function with 2-Dimensional Strain and Conventional Echocardiographic Parameters: A Comparative Analysis in Healthy Infants and Patients with Severe and Critical Pulmonary Stenosis

Liliana Gozar, Mihaela Iancu, Horea Gozar, Anca Sglimbea, Andreea Cerghit Paler, Dorottya Gabor-Miklosi, Rodica Toganel, Amalia Făgărășan, Diana Ramona Iurian, Daniela Toma, Liliana Gozar, Mihaela Iancu, Horea Gozar, Anca Sglimbea, Andreea Cerghit Paler, Dorottya Gabor-Miklosi, Rodica Toganel, Amalia Făgărășan, Diana Ramona Iurian, Daniela Toma

Abstract

Our aim was to compare the global longitudinal and regional biventricular strain between infants with severe and critical pulmonary stenosis (PS), and controls; to compare pre- and post-procedural strain values in infants with severe and critical PS; and to assess the correlations between echocardiographic strain and conventional parameters. We conducted a retrospective single-center study. The comparisons of echocardiographic variables were performed using separate linear mixed models. The overall mean right ventricle (RV) regional strains measured before intervention in PS patients was significantly different when compared to the control group (p = 0.0324). We found a significant change in the left ventricle, RV, and inter-ventricular septum strain (IVS) values from basal to apical location (p < 0.05). IVS strain values showed a higher decrease in mean strain values from basal to apical in PS patients. There was no significant difference in means of baseline and post-interventional strain values in PS patients (p > 0.05). Following the strain analysis in patients with PS, we obtained statistically significant changes in the RV global-4-chamber longitudinal strain (RV4C). The RV4C, which quantifies the longitudinal strain to the entire RV, can be used in current clinical practice for the evaluation of RV function in infants with severe and critical PS. The longitudinal and segmental strain capture the pathological changes in the IVS, modifications that cannot be highlighted through a classical echocardiographic evaluation.

Keywords: echocardiography; infants; myocardial strain; pulmonary stenosis; speckle tracking.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Biventricular speckle tracking analysis: (A) right ventricle speckle tracking analysis; RVFWSL—right ventricular free wall longitudinal peak systolic strain; RV4CSL—right ventricle four-chamber longitudinal strain; (B) left ventricle speckle tracking analysis; GLS_Endo_Peak_A4C (denoted by LV pGLS in our study)—peak global longitudinal strain of the left ventricle from apical four-chamber view.
Figure 2
Figure 2
Scatterplot between left ventricle peak global longitudinal strain (LVpGLS), mitral annular plane systolic excursion (MAPSE), and tricuspid annular plane systolic excursion (TAPSE) measured baseline and after intervention in the control group and pulmonary stenosis (PS) group; R = Pearson’s correlation coefficient; statistical significance: p < 0.05.
Figure 3
Figure 3
Scatterplot between right ventricle four-chamber strain (RV4C), mitral annular plane systolic excursion (MAPSE), and tricuspid annular plane systolic excursion (TAPSE) measured in the control group and pulmonary stenosis (PS) group (baseline and after intervention); R = Pearson’s correlation coefficient; statistical significance: p < 0.05.

References

    1. Peng L.F. Pulmonic Stenosis in Infants and Children: Clinical Manifestations and Diagnosis. [(accessed on 14 October 2020)]. Available online: .
    1. Bianchi D.W., Crombleholme T.M., D’Alton M.E., Malone F.D., editors. Fetology: Diagnosis and Management of the Fetal Patient. 2nd ed. McGraw Hill; New York, NY, USA: 2010. [(accessed on 15 November 2021)]. Pulmonary Stenosis and Atresia. Available online:
    1. Kan J.S., White R.I., Mitchell S.E., Gardner T.J. Percutaneous Balloon Valvuloplasty: A New Method for Treating Congenital Pulmonary-Valve Stenosis. N. Engl. J. Med. 1982;307:540–542. doi: 10.1056/NEJM198208263070907.
    1. Li S.J., Yu H.K., Wong S.J., Cheung Y.F. Right and left ventricular mechanics and interaction late after balloon valvoplasty for pulmonary stenosis. Eur. Heart J.–Cardiovasc. Imaging. 2014;15:1020–1028. doi: 10.1093/ehjci/jeu058.
    1. Friedberg M.K., Wu S., Slorach C. Left-Right Ventricular Interactions in Pediatric Aortic Stenosis: Right Ventricular Myocardial Strain before and after Aortic Valvuloplasty. J. Am. Soc. Echocardiogr. 2013;26:390–397. doi: 10.1016/j.echo.2012.12.014.
    1. Atsumi A., Seo Y., Ishizu T., Nakamura A., Enomoto Y., Harimura Y., Okazaki T., Abe Y., Aonuma K. Right Ventricular Deformation Analyses Using a Three-Dimensional Speckle-Tracking Echocardiographic System Specialized for the Right Ventricle. J. Am. Soc. Echocardiogr. 2016;29:402–411.e2. doi: 10.1016/j.echo.2015.12.014.
    1. Ronai C., Ghelani S.J., Marshall A.C., Harrild D.M., Gauvreau K., Colan S.D., Brown D.W. Characterization of Left Ventricular Dysfunction by Myocardial Strain in Critical Pulmonary Stenosis and Pulmonary Atresia After Neonatal Pulmonary Valve Balloon Dilation. Am. J. Cardiol. 2019;123:454–459. doi: 10.1016/j.amjcard.2018.10.025.
    1. Ronai C., Rathod R.H., Marshall A.C., Oduor R., Gauvreau K., Colan S.D., Brown D.W. Left Ventricular Dysfunction Following Neonatal Pulmonary Valve Balloon Dilation for Pulmonary Atresia or Critical Pulmonary Stenosis. Pediatr. Cardiol. 2015;36:1186–1193. doi: 10.1007/s00246-015-1142-4.
    1. Salte I.M., Østvik A., Smistad E., Melichova D., Nguyen T.M., Karlsen S., Brunvand H., Haugaa K.H., Edvardsen T., Lovstakken L., et al. Artificial Intelligence for Automatic Measurement of Left Ventricular Strain in Echocardiography. JACC Cardiovasc. Imaging. 2021;14:1918–1928. doi: 10.1016/j.jcmg.2021.04.018.
    1. Geyer H., Caracciolo G., Abe H., Wilansky S., Carerj S., Gentile F., Nesser H.J., Khandheria B., Narula J., Sengupta P.P. Assessment of myocardial mechanics using speckle tracking echocardiography: Fundamentals and clinical applications. J. Am. Soc. Echocardiogr. 2010;23:351–369. doi: 10.1016/j.echo.2010.02.015.
    1. Farsalinos K.E., Daraban A.M., Ünlü S., Thomas J.D., Badano L.P., Voigt J.U. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J. Am. Soc. Echocardiogr. 2015;28:1171–1181.e2. doi: 10.1016/j.echo.2015.06.011.
    1. Cvijic M., Voigt J.U. Application of strain echocardiography in valvular heart diseases. Anatol. J. Cardiol. 2020;23:244–253. doi: 10.14744/AnatolJCardiol.2020.09694.
    1. Cohen J., Binka E., Woldu K., Levasseur S., Glickstein J., Freud L.R., Chelliah A., Chiu J.S., Shah A. Myocardial strain abnormalities in fetuses with pulmonary atresia and intact ventricular septum. Ultrasound Obstet. Gynecol. 2019;53:512–519. doi: 10.1002/uog.19183.
    1. Petitjean C., Rougon N., Cluzel P. Assessment of myocardial function: A review of quantification methods and results using tagged MRI. J. Cardiovasc. Magn. Reson. 2005;7:501–516. doi: 10.1081/JCMR-200053610.
    1. Pena J.L., da Silva M.G., Alves J.M., Jr., Salemi V.M., Mady C., Baltabaeva A., Sutherland G.R. Sequential changes of longitudinal and radial myocardial deformation indices in the healthy neonate heart. J. Am. Soc. Echocardiogr. 2010;23:294–300. doi: 10.1016/j.echo.2009.12.026.
    1. Eyskens B., Brown S.C., Claus P., Dymarkowski S., Gewillig M., Bogaert J., Mertens L. The influence of pulmonary regurgitation on regional right ventricular function in children after surgical repair of tetralogy of Fallot. Eur. J. Echocardiogr. 2010;11:341–345. doi: 10.1093/ejechocard/jep209.
    1. Levy P.T., Sanchez Mejia A.A., Machefsky A., Fowler S., Holland M.R., Singh G.K. Normal ranges of right ventricular systolic and diastolic strain measures in children: A systematic review and meta-analysis. J. Am. Soc. Echocardiogr. 2014;27:549–560.e3. doi: 10.1016/j.echo.2014.01.015.
    1. Jashari H., Rydberg A., Ibrahimi P., Bajraktari G., Kryeziu L., Jashari F., Henein M.Y. Normal ranges of left ventricular strain in children: A meta-analysis. Cardiovasc. Ultrasound. 2015;13:37. doi: 10.1186/s12947-015-0029-0.
    1. Schubert U., Müller M., Norman M., Abdul-Khaliq H. Transition from fetal to neonatal life: Changes in cardiac function assessed by speckle-tracking echocardiography. Early Hum. Dev. 2013;89:803–808. doi: 10.1016/j.earlhumdev.2013.06.009.
    1. Levy P.T., Machefsky A., Sanchez A.A., Patel M.D., Rogal S., Fowler S., Yaeger L., Hardi A., Holland M.R., Hamvas A., et al. Reference Ranges of Left Ventricular Strain Measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2016;29:209–225.e6. doi: 10.1016/j.echo.2015.11.016.
    1. Beyar R., Dong S.J., Smith E.R., Belenkie I., Tyberg J.V. Ventricular interaction and septal deformation: A model compared with experimental data. Pt 2Am. J. Physiol. 1993;265:H2044–H2056. doi: 10.1152/ajpheart.1993.265.6.H2044.
    1. Kemal H.S., Kayıkçıoğlu M., Nalbantgil S., Can L.H., Moğulkoç N., Kültürsay H. Assessment of right ventricular function in patients with pulmonary arterial hypertension-congenital heart disease and repaired and unrepaired defects: Correlation among speckle tracking, conventional echocardiography, and clinical parameters. Anatol. J. Cardiol. 2020;23:277–287. doi: 10.14744/AnatolJCardiol.2020.01379.
    1. Kempny A., Diller G.P., Orwat S., Kaleschke G., Kerckhoff G., Bunck A.C., Maintz D., Baumgartner H. Right ventricular-left ventricular interaction in adults with Tetralogy of Fallot: A combined cardiac magnetic resonance and echocardiographic speckle tracking study. Int. J. Cardiol. 2012;154:259–264. doi: 10.1016/j.ijcard.2010.09.031.

Source: PubMed

3
S'abonner