[Fetal surgery for myelomeningocele: Obstetric evolution and short-term perinatal outcomes of a cohort of 21 cases]

Adolfo Etchegaray, Fernando Palma, Roberto De Rosa, Ricardo Daniel Russo, Ernesto Beruti, Rodolfo Fregonese, Hernán Allegrotti, Gabriel Musante, Angeles Cibert, Florencia Contino Storz, Sofia Marchionatti, Adolfo Etchegaray, Fernando Palma, Roberto De Rosa, Ricardo Daniel Russo, Ernesto Beruti, Rodolfo Fregonese, Hernán Allegrotti, Gabriel Musante, Angeles Cibert, Florencia Contino Storz, Sofia Marchionatti

Abstract

Objective: The aim of this study is to describe the surgical technique, obstetrical evolution, and perinatal outcomes of a cohort of fetuses undergoing intrauterine surgery to repair open spina bifida (OSB).

Methods: We performed a prospective analysis of 21 consecutive fetuses with OSB at our institution between 2015 and 2017. The surgical technique was similar to that described in the management of myelomeningocele study (MOMS) (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00060606) trial, except that the hysterotomy was performed using a bipolar dissector. Postoperative maternal and infant care both were provided at the same institution. There were no losses to follow-up. Surgical and obstetrical complications and perinatal outcomes were analyzed.

Results: Fetal surgery was performed at a mean gestation of 25.8 weeks (24.1-27.6). The mean gestational age at birth was 34.2 weeks (29.2-37.1). The mean surgical time was 138 min (101-187), the duration of surgery trending downward over time; while the average admission length was 7.1 days (4-32). Fifty-two percent (11/21) of the patients experienced preterm premature rupture of membranes. No patient required any postcesarean transfusions. There were no instances of placental abruption, uterine rupture, or maternal death. Uterine scar healing was normal in 95% of the patients. All but one of the 21 fetuses (95%) survived; the one fetal death was due to an amniotic band. The need for postnatal skin closure was 5%, with one of 20 repaired prenatally with a synthetic skin patch. No case (19) repaired with fetal tissues required postnatal skin closure. Seventy percent (14/20) of the infants required no further treatment for hydrocephalus over their first year of life; four patients (20%) required a ventriculoperitoneal shunt, while two others underwent an endoscopic third ventriculostomy (10%). Neonatal motor function was better than the prenatal anatomical level in 45% (9/20), equal in 50% (10/20), and worse in 5% (1/20).

Conclusions: Our data confirm that fetal surgery for OSB is associated with an increased risk of preterm delivery and premature rupture of membranes, but significantly reduces the need for postnatal treatment of hydrocephalus and improves short-term motor outcomes. Our results are similar to those published for the randomized MOMS trial.

Conflict of interest statement

There are no conflicts of interest.

Figures

Figura 1
Figura 1
Exposición uterina
Figura 2
Figura 2
Mapeo placentario
Figura 3
Figura 3
(a) Inicio de Histerotomía puntual con electrobisturi convencional. (b) Ampliación de Histerotomía con disector bipolar
Figura 4
Figura 4
Anestesia fetal
Figura 5
Figura 5
Exposición de la disrafia fetal
Figura 6
Figura 6
Cierre anatómico completo del defecto
Figura 7
Figura 7
Histerorrafia
Gráfico 1
Gráfico 1
Tiempos quirúrgicos detallados
Figura 8
Figura 8
Banda amniótica umbilical
Figura 9
Figura 9
Cicatriz cutánea incompleta en caso 1 (parche)
Figura 10
Figura 10
Cicatrices cutáneas de los casos 2–13. Caso 4 no incluido por óbito fetal. Nótense descargas laterales en el caso 8
Figura 11
Figura 11
Cicatrices cutáneas casos 14–21
Figura 12
Figura 12
Remisión prenatal de malformación de Chiari II en resonancia fetal (caso 2)
Gráfico 2
Gráfico 2
Necesidad de tratamiento de hidrocefalia en primer año de vida

References

    1. Adzick NS, Sutton LN, Crombleholme TM, Flake AW. Successful fetal surgery for spina bifida. Lancet. 1998;352:1675–6.
    1. Adzick NS, Thom EA, Spong CY, Brock JW, 3rd, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1004.
    1. Belfort MA, Whitehead WE, Shamshirsaz AA, Ruano R, Cass DL, Olutoye OO. Fetoscopic repair of meningomyelocele. Obstet Gynecol. 2015;126:881–4.
    1. Belfort MA, Whitehead WE, Shamshirsaz AA, Bateni ZH, Olutoye OO, Olutoye OA, et al. Fetoscopic open neural tube defect repair: Development and refinement of a two-port, carbon dioxide insufflation technique. Obstet Gynecol. 2017;129:734–43.
    1. Bidondo María P, Liascovich R, Barbero P, Groisman B. Prevalence of neural tube defects and estimation of cases averted in the post-fortification period in Argentina. Archivos argentinos de pediatria. 2015;113:498–501.
    1. Botto LD, Moore CA, Khoury MJ, Erickson JD. Neural-tube defects. N Engl J Med. 1999;341:1509–19.
    1. Bowman RM, McLone DG, Grant JA, Tomita T, Ito JA. Spina bifida outcome: A 25-year prospective. Pediatric Neurosurg. 2001;34:114–20.
    1. Bruner JP, Tulipan NE, Richards WO. Endoscopic coverage of fetal open myelomeningocele in utero. Am J Obstet Gynecol. 1997;176:256–7.
    1. Bruner JP, Tulipan N, Paschall RL, Boehm FH, Walsh WF, Silva SR, et al. Fetal surgery for myelomeningocele and the incidence of shunt-dependent hydrocephalus. JAMA. 1999;282:1819–25.
    1. Cohen AR, Couto J, Cummings JJ, Johnson A, Joseph G, Kaufman BA, et al. Position statement on fetal myelomeningocele repair. Am J Obstet Gynecol. 2014;210:107–11.
    1. Vital Statistics. Basic Information, Argentina Year 2015. Series 5, Number 59. Buenos Aires, December 2015. Vol. 59. Ministry of Health; [Last accessed on 2018 Apr 24]. Available from: .
    1. Flake A. Percutaneous minimal-access fetoscopic surgery for myelomeningocele –Not so minimal! Ultrasound Obstet Gynecol. 2014;44:499–500.
    1. Graf K, Kohl T, Neubauer BA, Dey F, Faas D, Wanis FA, et al. Percutaneous minimally invasive fetoscopic surgery for Spina Bifida aperta. Part III: Neurosurgical intervention in the first postnatal year. Ultrasound Obstet Gynecol. 2016;47:158–61.
    1. Grosse Scott D, Ouyang L, Collins JS, Green D, Dean JH, Stevenson RE. Economic evaluation of a neural tube defect recurrence-prevention program. Am J Prev Med. 2008;35:572–7.
    1. Kabagambe SK, Jensen GW, Chen YJ, Vanover MA, Farmer DL. Fetal surgery for myelomeningocele: A systematic review and meta-analysis of outcomes in fetoscopic versus open repair. Fetal Diagn Ther. 2018;43:161–74.
    1. Oakeshott P, Hunt GM. Long-term outcome in open spina bifida. Br J Gen Pract. 2003;53:632–6.
    1. Ouyang L, Grosse SD, Armour BS, Waitzman NJ. Health care expenditures of children and adults with spina bifida in a privately insured U.S. population. Birth Defects Res A Clin Mol Teratol. 2007;79:552–8.
    1. Pedreira DA, Nelci Zanon L, Nishikuni K, Moreira de SáRA, Acacio GL, Chmait RH, et al. Endoscopic surgery for the antenatal treatment of myelomeningocele: The CECAM trial. Am J Obstet Gynecol. 2016;214:111.e1–11.
    1. Anual Report RENAC. Epidemiological analysis of congenital anomalies in neonates registered during 2019 in the Argentinean Republic. 2017. [Last accessed on 2018 Apr 24]. Available from
    1. Rintoul NE, Sutton LN, Hubbard AM, Cohen B, Melchionni J, Pasquariello PS, et al. Anew look at myelomeningoceles: Functional level, vertebral level, shunting, and the implications for fetal intervention. Pediatrics. 2002;109:409–13.
    1. Soni S, Moldenhauer JS, Spinner SS, Rendon N, Khalek N, Martinez-Poyer J, et al. Chorioamniotic membrane separation and preterm premature rupture of membranes complicating in utero myelomeningocele repair. Am J Obstet Gynecol. 2016;214:647.e1–7.
    1. Sutton LN, Adzick NS, Bilaniuk LT, Johnson MP, Crombleholme TM, Flake AW, et al. Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA. 1999;282:1826–31.
    1. Tulipan N, Bruner JP. Myelomeningocele repair in utero: A report of three cases. Pediatr Neurosurg. 1998;28:177–80.
    1. Wong LY, Paulozzi LJ. Survival of infants with spina bifida: A population study 1979-94. Paediatr Perinat Epidemiol. 2001;15:374–8.
    1. Yi Y, Lindemann M, Colligs A, Snowball C. Economic burden of neural tube defects and impact of prevention with folic acid: A literature review. Eur J Pediatr. 2011;170:1391–400.
    1. Patten BM. Embryological stages in the establishing of myeloschisis with spina bifida. Am J Anat. 1953;93:365–95.
    1. Cameron AH. The spinal cord lesion in spina bifida cystica. Lancet. 1956;271:171–4.
    1. Hutchins GM, Meuli M, Meuli-Simmen C, Jordan MA, Heffez DS, Blakemore KJ, et al. Acquired spinal cord injury in human fetuses with myelomeningocele. Pediatr Pathol Lab Med. 1996;16:701–12.
    1. Tulipan N, Bruner JP. Myelomeningocele repair in utero: A report of three cases. Pediatr Neurosurg. 1998;28:177–80.
    1. Sutton LN, Adzick NS, Bilaniuk LT, Johnson MP, Crombleholme TM, Flake AW, et al. Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA. 1999;282:1826–31.
    1. Adzick NS, Thom EA, Spong CY, Brock JW, 3rd, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1004.
    1. Zuccaro G. Why fetal neurosurgery? Childs Nerv Syst. 2017;33:1081–2. Graf K, Kohl T, Neubauer BA, Dey F, Faas D, Wanis FA, et al. Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part III: Neurosurgical intervention in the first postnatal year. Ultrasound Obstet Gynecol 2016;47:158-61.

Source: PubMed

3
S'abonner