Pleiotropic modifiers of age-related diabetes and neonatal intestinal obstruction in cystic fibrosis

Melis A Aksit, Hua Ling, Rhonda G Pace, Karen S Raraigh, Frankline Onchiri, Anna V Faino, Kymberleigh Pagel, Elizabeth Pugh, Adrienne M Stilp, Quan Sun, Elizabeth E Blue, Fred A Wright, Yi-Hui Zhou, Michael J Bamshad, Ronald L Gibson, Michael R Knowles, Garry R Cutting, Scott M Blackman, CF Genome Project, Melis A Aksit, Michael J Bamshad, Scott M Blackman, Elizabeth Blue, Kati Buckingham, Jessica X Chong, J Michael Collaco, Garry R Cutting, Hong Dang, Alice Eastman, Anna Faino, Paul J Gallins, Ronald Gibson, Beth Godwin, William W Gordon, Kurt Hetrick, Le Huang, Michael R Knowles, Anh-Thu N Lam, Hua Ling, Weifang Liu, Yun Li, Frankline Onchiri, Wanda K O'Neal, Rhonda G Pace, Kymberleigh Pagel, Mark Porter, Elizabeth Pugh, Karen S Raraigh, Rebekah Mikeasky, Margaret Rosenfeld, Jonathan Rosen, Adrienne Stilp, Jaclyn R Stonebraker, Quan Sun, Jia Wen, Fred A Wright, Yingxi Yang, Peng Zhang, Yan Zhang, Yi-Hui Zhou, Melis A Aksit, Hua Ling, Rhonda G Pace, Karen S Raraigh, Frankline Onchiri, Anna V Faino, Kymberleigh Pagel, Elizabeth Pugh, Adrienne M Stilp, Quan Sun, Elizabeth E Blue, Fred A Wright, Yi-Hui Zhou, Michael J Bamshad, Ronald L Gibson, Michael R Knowles, Garry R Cutting, Scott M Blackman, CF Genome Project, Melis A Aksit, Michael J Bamshad, Scott M Blackman, Elizabeth Blue, Kati Buckingham, Jessica X Chong, J Michael Collaco, Garry R Cutting, Hong Dang, Alice Eastman, Anna Faino, Paul J Gallins, Ronald Gibson, Beth Godwin, William W Gordon, Kurt Hetrick, Le Huang, Michael R Knowles, Anh-Thu N Lam, Hua Ling, Weifang Liu, Yun Li, Frankline Onchiri, Wanda K O'Neal, Rhonda G Pace, Kymberleigh Pagel, Mark Porter, Elizabeth Pugh, Karen S Raraigh, Rebekah Mikeasky, Margaret Rosenfeld, Jonathan Rosen, Adrienne Stilp, Jaclyn R Stonebraker, Quan Sun, Jia Wen, Fred A Wright, Yingxi Yang, Peng Zhang, Yan Zhang, Yi-Hui Zhou

Abstract

Individuals with cystic fibrosis (CF) develop complications of the gastrointestinal tract influenced by genetic variants outside of CFTR. Cystic fibrosis-related diabetes (CFRD) is a distinct form of diabetes with a variable age of onset that occurs frequently in individuals with CF, while meconium ileus (MI) is a severe neonatal intestinal obstruction affecting ∼20% of newborns with CF. CFRD and MI are slightly correlated traits with previous evidence of overlap in their genetic architectures. To better understand the genetic commonality between CFRD and MI, we used whole-genome-sequencing data from the CF Genome Project to perform genome-wide association. These analyses revealed variants at 11 loci (6 not previously identified) that associated with MI and at 12 loci (5 not previously identified) that associated with CFRD. Of these, variants at SLC26A9, CEBPB, and PRSS1 associated with both traits; variants at SLC26A9 and CEBPB increased risk for both traits, while variants at PRSS1, the higher-risk alleles for CFRD, conferred lower risk for MI. Furthermore, common and rare variants within the SLC26A9 locus associated with MI only or CFRD only. As expected, different loci modify risk of CFRD and MI; however, a subset exhibit pleiotropic effects indicating etiologic and mechanistic overlap between these two otherwise distinct complications of CF.

Keywords: CFRD; cystic fibrosis; cystic fibrosis-related diabetes; diabetes; genetic modifier; intestinal obstruction; meconium ileus; pleiotropy.

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Copyright © 2022 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
Kaplan-Meier plots for age of onset of CFRD Plots divided by history of meconium ileus and site of enrollment in (A) everyone, (B) individuals born after 1970, (C) F508del homozygotes, and (D) F508del homozygotes born after 1970.
Figure 2
Figure 2
Manhattan plots of phase 1 + 2 combined association analyses Association analysis was performed on all variants with minor allele frequency (MAF) > 0.5% that passed quality control criteria. The x axis indicates chromosomal position, and the y axis indicates the strength of evidence for association with meconium ileus (−log10[p value]) (top) or cystic fibrosis-related diabetes (bottom). Adjusted models include additional covariates of MI or CFRD. The black line corresponds to the genome-wide significance threshold (p value 5e−8). Labels in bold exceed genome-wide significance and in regular font exceeded suggestive significance. Labels in blue are not previously identified for MI, purple are not previously identified for CFRD, and black are previously known. CEBPB falls below the suggestive threshold in the adjusted analyses, so it is labeled in parentheses.
Figure 3
Figure 3
Comparison of the genetic risk architectures of CFRD and MI Comparison of p values of each variant for association with MI and CFRD. All variants have been plotted. The MI log10(p value) was defined as positive when the risk alleles were concordant between CFRD and MI.
Figure 4
Figure 4
Forest plot of significant loci (genome-wide significant, suggestive significant, or candidate-based significant) Summary statistics in the adjusted analyses are shown. Genomic positions are in GRCh38. §Aksit et al. ‡Gong et al. EA, effect allele; OA, other allele; EAF: effect allele frequency.
Figure 5
Figure 5
LocusZoom plots for the SLC26A9 locus (A) LocusZoom plot for association with MI in the CFGP cohort, adjusted with a covariate of CFRD Martingale residuals. (B) LocusZoom plot for association with CFRD Martingale residuals in the CFGP cohort, adjusted with a covariate of MI. (C) D′ linkage disequilibrium plot created on Haploview demonstrating the linkage disequilibrium between key SNPs in the region in the CFGP cohort.
Figure 6
Figure 6
LocusZoom plots for the CEBPB locus (A) LocusZoom plot for association with MI in the CFGP cohort, adjusted with a covariate of CFRD Martingale residuals. (B) LocusZoom plot for association with CFRD Martingale residuals in the CFGP cohort, adjusted with a covariate of MI. (C) R-squared linkage disequilbrium plot created on Haploview demonstrating the linkage disequilibrium between key SNPs in the region in the CFGP cohort.
Figure 7
Figure 7
LocusZoom and linkage disequilibrium plots for the PRSS1 locus (A) LocusZoom plot for association with MI, adjusted with a covariate of CFRD Martingale residuals. (B) LocusZoom plot for association with CFRD Martingale residuals, adjusted with a covariate of MI. (C) R-squared linkage disequilibrium plot created on Haploview demonstrating the linkage disequilibrium between key SNPs in the region in the CFGP cohort.
Figure 8
Figure 8
LocusZoom plots for the CLPS locus (A) LocusZoom plot for association with MI, adjusted with a covariate of CFRD Martingale residuals. (B) LocusZoom plot for association with CFRD Martingale residuals, adjusted with a covariate of MI.

References

    1. Couce M., O'Brien T.D., Moran A., Roche P.C., Butler P.C. Diabetes mellitus in cystic fibrosis is characterized by islet amyloidosis. J. Clin. Endocrinol. Metab. 1996;81:1267–1272. doi: 10.1210/jcem.81.3.8772610.
    1. Hull R.L., Westermark G.T., Westermark P., Kahn S.E. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 2004;89:3629–3643. doi: 10.1210/jc.2004-0405.
    1. Moran A., Becker D., Casella S.J., Gottlieb P.A., Kirkman M.S., Marshall B.C., Slovis B., CFRD Consensus Conference Committee Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-related diabetes: a technical review. Diabetes Care. 2010;33:2677–2683. doi: 10.2337/dc10-1279.
    1. Moran A., Dunitz J., Nathan B., Saeed A., Holme B., Thomas W. Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care. 2009;32:1626–1631. doi: 10.2337/dc09-0586.
    1. Lewis C., Blackman S.M., Nelson A., Oberdorfer E., Wells D., Dunitz J., Thomas W., Moran A. Diabetes-related mortality in adults with cystic fibrosis. role of genotype and sex. Am. J. Respir. Crit. Care Med. 2015;191:194–200. doi: 10.1164/rccm.201403-0576OC.
    1. Bengtson C.D., He J., Kim M.D., Salathe M.A. Cystic fibrosis-related diabetes is associated with worse lung function trajectory despite ivacaftor use. Am. J. Respir. Crit. Care Med. 2021;204:1343–1345. doi: 10.1164/rccm.202104-1060LE.
    1. Blackman S.M., Hsu S., Ritter S.E., Naughton K.M., Wright F.A., Drumm M.L., Knowles M.R., Cutting G.R. A susceptibility gene for type 2 diabetes confers substantial risk for diabetes complicating cystic fibrosis. Diabetologia. 2009;52:1858–1865. doi: 10.1007/s00125-009-1436-2.
    1. Blackman S.M., Commander C.W., Watson C., Arcara K.M., Strug L.J., Stonebraker J.R., Wright F.A., Rommens J.M., Sun L., Pace R.G., et al. Genetic modifiers of cystic fibrosis-related diabetes. Diabetes. 2013;62:3627–3635. doi: 10.2337/db13-0510.
    1. Aksit M.A., Pace R.G., Vecchio-Pagán B., Ling H., Rommens J.M., Boelle P.Y., Guillot L., Raraigh K.S., Pugh E., Zhang P., et al. Genetic modifiers of cystic fibrosis-related diabetes have extensive overlap with type 2 diabetes and related traits. J. Clin. Endocrinol. Metab. 2020;105:dgz102. doi: 10.1210/clinem/dgz102.
    1. Carlyle B.E., Borowitz D.S., Glick P.L. A review of pathophysiology and management of fetuses and neonates with meconium ileus for the pediatric surgeon. J. Pediatr. Surg. 2012;47:772–781. doi: 10.1016/j.jpedsurg.2012.02.019.
    1. Cystic Fibrosis Foundation . 2019. Cystic Fibrosis Foundation Patient Registry Annual Data Report.
    1. Lin Y.C., Keenan K., Gong J., Panjwani N., Avolio J., Lin F., Adam D., Barrett P., Bégin S., Berthiaume Y., et al. Cystic fibrosis-related diabetes onset can be predicted using biomarkers measured at birth. Genet. Med. 2021;23:927–933. doi: 10.1038/s41436-020-01073-x.
    1. Gong J., Wang F., Xiao B., Panjwani N., Lin F., Keenan K., Avolio J., Esmaeili M., Zhang L., He G., et al. Genetic association and transcriptome integration identify contributing genes and tissues at cystic fibrosis modifier loci. PLoS Genet. 2019;15:e1008007. doi: 10.1371/journal.pgen.1008007.
    1. Sun L., Rommens J.M., Corvol H., Li W., Li X., Chiang T.A., Lin F., Dorfman R., Busson P.F., Parekh R.V., et al. Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat. Genet. 2012;44:562–569. doi: 10.1038/ng.2221.
    1. Hodgkin J. Seven types of pleiotropy. Int. J. Dev. Biol. 1998;42:501–505.
    1. Vanscoy L.L., Blackman S.M., Collaco J.M., Bowers A., Lai T., Naughton K., Algire M., McWilliams R., Beck S., Hoover-Fong J., et al. Heritability of lung disease severity in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2007;175:1036–1043. doi: 10.1164/rccm.200608-1164OC.
    1. Corvol H., Blackman S.M., Boëlle P.Y., Gallins P.J., Pace R.G., Stonebraker J.R., Accurso F.J., Clement A., Collaco J.M., Dang H., et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat. Commun. 2015;6:8382. doi: 10.1038/ncomms9382.
    1. Drumm M.L., Konstan M.W., Schluchter M.D., Handler A., Pace R., Zou F., Zariwala M., Fargo D., Xu A., Dunn J.M., et al. Genetic modifiers of lung disease in cystic fibrosis. N. Engl. J. Med. 2005;353:1443–1453. doi: 10.1056/NEJMoa051469.
    1. Stonebraker J.R., Ooi C.Y., Pace R.G., Corvol H., Knowles M.R., Durie P.R., Ling S.C. Features of severe liver disease with portal hypertension in patients with cystic fibrosis. Clin. Gastroenterol. Hepatol. 2016;14:1207–1215.e3. doi: 10.1016/j.cgh.2016.03.041.
    1. Bartlett J.R., Friedman K.J., Ling S.C., Pace R.G., Bell S.C., Bourke B., Castaldo G., Castellani C., Cipolli M., Colombo C., et al. Genetic modifiers of liver disease in cystic fibrosis. JAMA. 2009;302:1076–1083. doi: 10.1001/jama.2009.1295.
    1. Polineni D., Piccorelli A.V., Hannah W.B., Dalrymple S.N., Pace R.G., Durie P.R., Ling S.C., Knowles M.R., Stonebraker J.R. Analysis of a large cohort of cystic fibrosis patients with severe liver disease indicates lung function decline does not significantly differ from that of the general cystic fibrosis population. PLoS One. 2018;13:e0205257. doi: 10.1371/journal.pone.0205257.
    1. Treggiari M.M., Rosenfeld M., Mayer-Hamblett N., Retsch-Bogart G., Gibson R.L., Williams J., Emerson J., Kronmal R.A., Ramsey B.W., EPIC Study Group Early anti-pseudomonal acquisition in young patients with cystic fibrosis: rationale and design of the EPIC clinical trial and observational study. Contemp. Clin. Trials. 2009;30:256–268. doi: 10.1016/j.cct.2009.01.003.
    1. Raraigh K.S., Aksit M.A., Hetrick K., Pace R.G., Ling H., O'Neal W., Blue E., Zhou Y.H., Bamshad M.J., Blackman S.M., et al. Complete CFTR gene sequencing in 5,058 individuals with cystic fibrosis informs variant-specific treatment. J. Cyst. Fibros. 2021;21:463–470. doi: 10.1016/j.jcf.2021.10.011.
    1. Knapp E.A., Fink A.K., Goss C.H., Sewall A., Ostrenga J., Dowd C., Elbert A., Petren K.M., Marshall B.C. The cystic fibrosis foundation patient registry: Design and methods of a national observational disease registry. Annals of the American Thoracic Society. 2016;13:1173–1179.
    1. Blackman S.M., Deering-Brose R., McWilliams R., Naughton K., Coleman B., Lai T., Algire M., Beck S., Hoover-Fong J., Hamosh A., et al. Relative contribution of genetic and nongenetic modifiers to intestinal obstruction in cystic fibrosis. Gastroenterology. 2006;131:1030–1039. doi: 10.1053/j.gastro.2006.07.016.
    1. Jun G., Flickinger M., Hetrick K.N., Romm J.M., Doheny K.F., Abecasis G.R., Boehnke M., Kang H.M. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet. 2012;91:839–848. doi: 10.1016/j.ajhg.2012.09.004.
    1. Gogarten S.M., Sofer T., Chen H., Yu C., Brody J.A., Thornton T.A., Rice K.M., Conomos M.P. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics. 2019;35:5346–5348. doi: 10.1093/bioinformatics/btz567.
    1. Manichaikul A., Mychaleckyj J.C., Rich S.S., Daly K., Sale M., Chen W.M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–2873. doi: 10.1093/bioinformatics/btq559.
    1. Conomos M.P., Miller M.B., Thornton T.A. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genet. Epidemiol. 2015;39:276–293. doi: 10.1002/gepi.21896.
    1. Zheng X., Levine D., Shen J., Gogarten S.M., Laurie C., Weir B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–3328. doi: 10.1093/bioinformatics/bts606.
    1. Zhu X., Li S., Cooper R.S., Elston R.C. A unified association analysis approach for family and unrelated samples correcting for stratification. Am. J. Hum. Genet. 2008;82:352–365. doi: 10.1016/j.ajhg.2007.10.009.
    1. Chen H., Wang C., Conomos M.P., Stilp A.M., Li Z., Sofer T., Szpiro A.A., Chen W., Brehm J.M., Celedón J.C., et al. Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. Am. J. Hum. Genet. 2016;98:653–666. doi: 10.1016/j.ajhg.2016.02.012.
    1. Therneau T.M., Grambsch P.M., Fleming T.R. Martingale-based residuals for survival models. Biometrika. 1990;77:147–160.
    1. Lange T., Hansen K.W., Sørensen R., Galatius S. Applied mediation analyses: a review and tutorial. Epidemiol. Health. 2017;39:e2017035. doi: 10.4178/epih.e2017035.
    1. Choi Y., Chan A.P. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–2747. doi: 10.1093/bioinformatics/btv195.
    1. Sim N.L., Kumar P., Hu J., Henikoff S., Schneider G., Ng P.C. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–W457. doi: 10.1093/nar/gks539.
    1. Kim S., Jhong J.H., Lee J., Koo J.Y. Meta-analytic support vector machine for integrating multiple omics data. BioData Min. 2017;10:2. doi: 10.1186/s13040-017-0126-8.
    1. Schwarz J.M., Rödelsperger C., Schuelke M., Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods. 2010;7:575–576. doi: 10.1038/nmeth0810-575.
    1. Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248.
    1. Rogers M.F., Shihab H.A., Mort M., Cooper D.N., Gaunt T.R., Campbell C. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics. 2018;34:511–513. doi: 10.1093/bioinformatics/btx536.
    1. Alirezaie N., Kernohan K.D., Hartley T., Majewski J., Hocking T.D. ClinPred: prediction tool to identify disease-relevant nonsynonymous single-nucleotide variants. Am. J. Hum. Genet. 2018;103:474–483. doi: 10.1016/j.ajhg.2018.08.005.
    1. Pagel K.A., Kim R., Moad K., Busby B., Zheng L., Tokheim C., Ryan M., Karchin R. Integrated informatics analysis of cancer-related variants. JCO Clin. Cancer Inform. 2020;4:310–317. doi: 10.1200/CCI.19.00132.
    1. Frankish A., Diekhans M., Ferreira A.M., Johnson R., Jungreis I., Loveland J., Mudge J.M., Sisu C., Wright J., Armstrong J., et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47:D766–D773. doi: 10.1093/nar/gky955.
    1. Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141, 456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7.
    1. Chen H., Huffman J.E., Brody J.A., Wang C., Lee S., Li Z., Gogarten S.M., Sofer T., Bielak L.F., Bis J.C., et al. Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole-genome sequencing studies. Am. J. Hum. Genet. 2019;104:260–274. doi: 10.1016/j.ajhg.2018.12.012.
    1. Loh P.R., Danecek P., Palamara P.F., Fuchsberger C., A Reshef Y., K Finucane H., Schoenherr S., Forer L., McCarthy S., Abecasis G.R., et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 2016;48:1443–1448. doi: 10.1038/ng.3679.
    1. Lam A.T.N., Aksit M.A., Vecchio-Pagan B., Shelton C.A., Osorio D.L., Anzmann A.F., Goff L.A., Whitcomb D.C., Blackman S.M., Cutting G.R. Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis. J. Clin. Invest. 2020;130:272–286. doi: 10.1172/JCI129833.
    1. Giambartolomei C., Vukcevic D., Schadt E.E., Franke L., Hingorani A.D., Wallace C., Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383. doi: 10.1371/journal.pgen.1004383.
    1. Mahajan A., Taliun D., Thurner M., Robertson N.R., Torres J.M., Rayner N.W., Payne A.J., Steinthorsdottir V., Scott R.A., Grarup N., et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 2018;50:1505–1513. doi: 10.1038/s41588-018-0241-6.
    1. GTEx Consortium The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013;45:580–585. doi: 10.1038/ng.2653.
    1. Whitcomb D.C., LaRusch J., Krasinskas A.M., Klei L., Smith J.P., Brand R.E., Neoptolemos J.P., Lerch M.M., Tector M., Sandhu B.S., et al. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nat. Genet. 2012;44:1349–1354. doi: 10.1038/ng.2466.
    1. Vujkovic M., Keaton J.M., Lynch J.A., Miller D.R., Zhou J., Tcheandjieu C., Huffman J.E., Assimes T.L., Lorenz K., Zhu X., et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 2020;52:680–691. doi: 10.1038/s41588-020-0637-y.
    1. Yengo L., Sidorenko J., Kemper K.E., Zheng Z., Wood A.R., Weedon M.N., Frayling T.M., Hirschhorn J., Yang J., Visscher P.M., GIANT Consortium Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 2018;27:3641–3649. doi: 10.1093/hmg/ddy271.
    1. Schmitt A.D., Hu M., Jung I., Xu Z., Qiu Y., Tan C.L., Li Y., Lin S., Lin Y., Barr C.L., Ren B. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep. 2016;17:2042–2059. doi: 10.1016/j.celrep.2016.10.061.
    1. Long J.Z., Svensson K.J., Bateman L.A., Lin H., Kamenecka T., Lokurkar I.A., Lou J., Rao R.R., Chang M.R., Jedrychowski M.P., et al. The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell. 2016;166:424–435. doi: 10.1016/j.cell.2016.05.071.
    1. Kichaev G., Bhatia G., Loh P.R., Gazal S., Burch K., Freund M.K., Schoech A., Pasaniuc B., Price A.L. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 2019;104:65–75. doi: 10.1016/j.ajhg.2018.11.008.
    1. Salamov A.A., Nishikawa T., Swindells M.B. Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics. 1998;14:384–390. doi: 10.1093/bioinformatics/14.5.384.
    1. Lohi H., Kujala M., Makela S., Lehtonen E., Kestila M., Saarialho-Kere U., Markovich D., Kere J. Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J. Biol. Chem. 2002;277:14246–14254. doi: 10.1074/jbc.M111802200.
    1. El Khouri E., Touré A. Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance. Int. J. Biochem. Cell Biol. 2014;52:58–67. doi: 10.1016/j.biocel.2014.02.001.
    1. Livingston D.M. EMSY, a BRCA-2 partner in crime. Nat. Med. 2004;10:127–128. doi: 10.1038/nm0204-127.
    1. Marenholz I., Grosche S., Kalb B., Rüschendorf F., Blümchen K., Schlags R., Harandi N., Price M., Hansen G., Seidenberg J., et al. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. Nat. Commun. 2017;8:1056. doi: 10.1038/s41467-017-01220-0.
    1. Peyrot W.J., Price A.L. Identifying loci with different allele frequencies among cases of eight psychiatric disorders using CC-GWAS. Nat. Genet. 2021;53:445–454. doi: 10.1038/s41588-021-00787-1.
    1. Paternoster L., Standl M., Waage J., Baurecht H., Hotze M., Strachan D.P., Curtin J.A., Bønnelykke K., Tian C., Takahashi A., et al. Multi-ancestry genome-wide association study of 21, 000 cases and 95, 000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 2015;47:1449–1456. doi: 10.1038/ng.3424.
    1. Baurecht H., Hotze M., Brand S., Büning C., Cormican P., Corvin A., Ellinghaus D., Ellinghaus E., Esparza-Gordillo J., Fölster-Holst R., et al. Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms. Am. J. Hum. Genet. 2015;96:104–120. doi: 10.1016/j.ajhg.2014.12.004.
    1. Boulling A., Sato M., Masson E., Génin E., Chen J.M., Férec C. Identification of a functional PRSS1 promoter variant in linkage disequilibrium with the chronic pancreatitis-protecting rs10273639. Gut. 2015;64:1837–1838. doi: 10.1136/gutjnl-2015-310254.
    1. Guo L., Li X., Tang Q.Q. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J. Biol. Chem. 2015;290:755–761. doi: 10.1074/jbc.R114.619957.
    1. Lowe M.E. Structure and function of pancreatic lipase and colipase. Annu. Rev. Nutr. 1997;17:141–158. doi: 10.1146/annurev.nutr.17.1.141.

Source: PubMed

3
S'abonner