A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb

E D Oña, R Cano-de la Cuerda, P Sánchez-Herrera, C Balaguer, A Jardón, E D Oña, R Cano-de la Cuerda, P Sánchez-Herrera, C Balaguer, A Jardón

Abstract

Robot-mediated neurorehabilitation is a growing field that seeks to incorporate advances in robotics combined with neuroscience and rehabilitation to define new methods for treating problems related with neurological diseases. In this paper, a systematic literature review is conducted to identify the contribution of robotics for upper limb neurorehabilitation, highlighting its relation with the rehabilitation cycle, and to clarify the prospective research directions in the development of more autonomous rehabilitation processes. With this aim, first, a study and definition of a general rehabilitation process are made, and then, it is particularized for the case of neurorehabilitation, identifying the components involved in the cycle and their degree of interaction between them. Next, this generic process is compared with the current literature in robotics focused on upper limb treatment, analyzing which components of this rehabilitation cycle are being investigated. Finally, the challenges and opportunities to obtain more autonomous rehabilitation processes are discussed. In addition, based on this study, a series of technical requirements that should be taken into account when designing and implementing autonomous robotic systems for rehabilitation is presented and discussed.

Figures

Figure 1
Figure 1
The rehabilitation cycle [21].
Figure 2
Figure 2
The automated rehabilitation cycle.
Figure 3
Figure 3
Activity diagram for the automation of the rehabilitation process. In the example shown, three functionality problems were identified in the assessment phase: problem 3 is solved after the first intervention, but problems 1 and 2 remain. Then, the rehab cycle is repeated for n iterations.

References

    1. Janca A., Aarli J. A., Prilipko L., Dua T., Saxena S., Saraceno B. WHO/WFN survey of neurological services: a worldwide perspective. Journal of the Neurological Sciences. 2006;247(1):29–34. doi: 10.1016/j.jns.2006.03.003.
    1. United Nations. World Population Ageing 2017 Report. 2017. October, 2017 .
    1. Holliday R. C., Antoun M., Playford E. D. A survey of goal-setting methods used in rehabilitation. Neurorehabilitation and Neural Repair. 2005;19(3):227–231. doi: 10.1177/1545968305279206. 16093413.
    1. Climent Barbera J., Sanchez-Paya J. Indicadores de salud y medicina de rehabilitacion: estimadores de incapacidad en la poblacion. Rehabilitacion. 1996;30:277–286.
    1. Chua K. S. G., Kuah C. W. K. Innovating with rehabilitation technology in the real world: promises, potentials, and perspectives. American Journal of Physical Medicine & Rehabilitation. 2017;96(10):S150–S156. doi: 10.1097/PHM.0000000000000799.
    1. Van der Loos H. M., Reinkensmeyer D. J., Guglielmelli E. Rehabilitation and health care robotics. In: Siciliano B., Khatib O., editors. Springer Handbook of Robotics. Cham: Springer International Publishing; 2016. pp. 1685–1728.
    1. Gomes P. Surgical robotics: reviewing the past, analysing the present, imagining the future. Robotics and Computer-Integrated Manufacturing. 2011;27(2):261–266. doi: 10.1016/j.rcim.2010.06.009. Translational Research – Where Engineering Meets Medicine.
    1. Huang H., Wolf S. L., He J. Recent developments in biofeedback for neuromotor rehabilitation. Journal of Neuroengineering and Rehabilitation. 2006;3(1):p. 11. doi: 10.1186/1743-0003-3-11.
    1. Poli P., Morone G., Rosati G., Masiero S. Robotic technologies and rehabilitation: new tools for stroke patients’ therapy. BioMed Research International. 2013;2013:8. doi: 10.1155/2013/153872.
    1. Timmermans A. A., Seelen H. A., Willmann R. D., Kingma H. Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. Journal of Neuroengineering and Rehabilitation. 2009;6(1):p. 1. doi: 10.1186/1743-0003-6-1.
    1. Dıaz I., Gil J. J., Sanchez E. Lower-limb robotic rehabilitation: literature review and challenges. Journal of Robotics. 2011;2011:11. doi: 10.1155/2011/759764.759764
    1. Lv X., Wu Z. Review of robot-assisted gait rehabilitation after stroke. Journal of Rehabilitation Robotics. 2013;2013:3–8. doi: 10.12970/2308-8354.2013.01.01.1.
    1. Qian Z., Bi Z. Recent development of rehabilitation robots. Advances in Mechanical Engineering. 2014;7(2) doi: 10.1155/2014/563062.563062
    1. Rodrıguez-Prunotto L., Cano-de la Cuerda R., Cuesta-Gomez A., Alguacil-Diego I. M., Molina-Rueda F. Terapia robótica para la rehabilitación del miembro superior en patología neurológica. Rehabilitación. 2014;48(2):104–128. doi: 10.1016/j.rh.2014.01.001.
    1. Marchal-Crespo L., Reinkensmeyer D. J. Review of control strategies for robotic movement training after neurologic injury. Journal of Neuroengineering and Rehabilitation. 2009;6(1):p. 20. doi: 10.1186/1743-0003-6-20.
    1. Yan T., Cempini M., Oddo C. M., Vitiello N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems. 2015;64:120–136. doi: 10.1016/j.robot.2014.09.032.
    1. Lo A. C., Guarino P. D., Richards L. G., et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine. 2010;362(19):1772–1783. doi: 10.1056/NEJMoa0911341.
    1. Kwakkel G., Kollen B. J., Krebs H. I. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation and Neural Repair. 2008;22(2):111–121. doi: 10.1177/1545968307305457.
    1. Norouzi-Gheidari N., Archambault P. S., Fung J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. Journal of Rehabilitation Research and Development. 2012;49(4):479–496. doi: 10.1682/JRRD.2010.10.0210.
    1. Veerbeek J. M., Langbroek-Amersfoort A. C., van Wegen E. E. H., Meskers C. G. M., Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke: a systematic review and metaanalysis. Neurorehabilitation and Neural Repair. 2017;31(2):107–121. doi: 10.1177/1545968316666957.
    1. World Health Organization. World Report on Disability. 2011. October 2017,
    1. Meyer T., Gutenbrunner C., Bickenbach J., Cieza A., Melvin J., Stucki G. Towards a conceptual description of rehabilitation as a health strategy. Journal of Rehabilitation Medicine. 2011;43(769):765–769. doi: 10.2340/16501977-0865.
    1. Stucki G., Sangha O. Principles of rehabilitation. Rheumatology. 1998;1:517–530.
    1. Steiner W. A., Ryser L., Huber E., Uebelhart D., Aeschlimann A., Stucki G. Use of the icf model as a clinical problem-solving tool in physical therapy and rehabilitation medicine. Physical Therapy. 2002;82(111):1098–1107.
    1. World Health Organization. Neurological Disorders: Public Health Challenges. 2006. October 2017,
    1. King J., Nelson T., Blankenship K., Turturro T., Beck A. In: Rehabilitation Team Function and Prescriptions, Referrals, and Order Writing, Rehabilitation Medicine: Principles and Practice. 4th. Delisa J. A., editor. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 2005.
    1. McColl M., Gerein N., Valentine F. Occupational Therapy: Enabling Function and Well-Being. Thorofare, NJ, USA: Slack; 1997. Meeting the challenges of disability: models for enabling function and well-being; pp. 509–528.
    1. Ramiro-Gonzalez M., Gonzalez Alted C. El equipo de trabajo en neurorrehabilitacion. In: Cano-de la Cuerda R., Collado Vazquez S., editors. Neurorehabilitacion. Madrid, Spain: Medica Panamericana; 2012. pp. 61–72.
    1. Reilly C. Transdisciplinary approach: an atypical strategy for improving outcomes in rehabilitative and long-term acute care settings. Rehabilitation Nursing. 2001;26(6):216–244. doi: 10.1002/j.2048-7940.2001.tb01958.x.
    1. Finch E. Physical Rehabilitation Outcome Measures: A Guide to Enhanced Clinical Decision Making. 2nd. Hamilton, ON, Canada: Canadian Physiotherapy Association; 2002.
    1. World Health Organization. International Classification of Functioning. Disability and Health (ICF); 2001. October 2017,
    1. Barnes M. P. Principles of neurological rehabilitation. Journal of Neurology, Neurosurgery & Psychiatry. 2003;74(90004):3iv–3iv7. doi: 10.1136/jnnp.74.suppl_4.iv3.
    1. Thompson A. J. Neurological rehabilitation: from mechanisms to management. Journal of Neurology, Neurosurgery & Psychiatry. 2000;69(6):718–722. doi: 10.1136/jnnp.69.6.718.
    1. Miller E. L., Murray L., Richards L., et al. Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association. Stroke. 2010;41(10):2402–2448. doi: 10.1161/STR.0b013e3181e7512b.
    1. Neumann V., Gutenbrunner C., Fialka-Moser V., et al. Interdisciplinary team working in physical and rehabilitation medicine. Journal of Rehabilitation Medicine. 2010;42(1):4–8. doi: 10.2340/16501977-0483.
    1. Katz D., Mills V., Cassidy J. The Neurological Rehabilitation Model in Clinical Practice. Oxford, UK: Blackwell Science; Neurological rehabilitation: a guide to diagnosis, prognosis and treatment planning; pp. 1–27.
    1. Kersten P. Principles of physiotherapy assessment and outcome measures. Physical Management in Neurological Rehabilitation. 2004;2:29–46. doi: 10.1016/b978-072343285-2.50007-3.
    1. Salter K., Campbell N., Richardson M., et al. Evidence-Based Review of Stroke Rehabilitation, Heart and Stroke Foundation. Ontario, Canada: Canadian Partnership for Stroke Recovery; 2014. Outcome measures in stroke rehabilitation.
    1. Lennon S. Physiotherapy practice in stroke rehabilitation: a survey. Disability and Rehabilitation. 2003;25(9):455–461. doi: 10.1080/0963828031000069744. 12745940.
    1. Pomeroy V., Aglioti S. M., Mark V. W., et al. Neurological principles and rehabilitation of action disorders: rehabilitation interventions. Neurorehabilitation and Neural Repair. 2011;25(Supplement 5):33S–43S. doi: 10.1177/1545968311410942.
    1. Donaghy M. Principles of neurological rehabilitation. In: Donaghy M., editor. Brain’s Diseases of the Nervous System. 12. Oxford, UK: Oxford University Press; 2011. pp. 165–179.
    1. Doig E., Fleming J., Cornwell P. L., Kuipers P. Qualitative exploration of a client-centered, goal-directed approach to community-based occupational therapy for adults with traumatic brain injury. American Journal of Occupational Therapy. 2009;63(5):559–568. doi: 10.5014/ajot.63.5.559.
    1. The Partnership for Robotics in Europe SPARC. Robotics 2020 Multi Annual Roadmap. Brussels, Belgium: Call 2 ICT24 (2015) – Horizon 2020; 2015.
    1. Davis A., Davis S., Moss N., et al. First steps towards an interdisciplinary approach to rehabilitation. Clinical Rehabilitation. 1992;6(3):237–244. doi: 10.1177/026921559200600308.
    1. Bosecker C., Dipietro L., Volpe B., Krebs H. I. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabilitation and Neural Repair. 2010;24(1):62–69. doi: 10.1177/1545968309343214. 19684304.
    1. Capterra. 1999. January 2018,
    1. The medical futurist. 2018. January 2018,
    1. Iosa M., Morone G., Cherubini A., Paolucci S. The three laws of neurorobotics: a review on what neurorehabilitation robots should do for patients and clinicians. Journal of Medical and Biological Engineering. 2016;36(1):1–11. doi: 10.1007/s40846-016-0115-2.
    1. Muradore R., Fiorini P., Akgun G., et al. Development of a cognitive robotic system for simple surgical tasks. International Journal of Advanced Robotic Systems. 2015;12(4):p. 37. doi: 10.5772/60137.
    1. Hidler J., Lum P. S. The road ahead for rehabilitation robotics. The Journal of Rehabilitation Research and Development. 2011;48(4):vii–vix. doi: 10.1682/jrrd.2011.02.0014.
    1. Acosta A. M., Dewald H. A., Dewald J. P. Pilot study to test effectiveness of video game on reaching performance in stroke. The Journal of Rehabilitation Research and Development. 2011;48(4):431–444. doi: 10.1682/JRRD.2010.04.0052.
    1. Burgar C. G., Garber S. L., Van der Loos H. M., PhD O., Deborah Kenney M. S., Shor P. Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: department of veterans affairs multisite clinical trial. The Journal of Rehabilitation Research and Development. 2011;48(4):445–458. doi: 10.1682/JRRD.2010.04.0062.
    1. Saborowski M., Kollak I. “How do you care for technology?” – care professionals’ experiences with assistive technology in care of the elderly. Technological Forecasting and Social Change. 2015;93:133–140. doi: 10.1016/j.techfore.2014.05.006. Science, Technology and the “Grand Challenge” of Ageing.
    1. Coster W. J. Making the best match: selecting outcome measures for clinical trials and outcome studies. American Journal of Occupational Therapy. 2013;67(2):162–170. doi: 10.5014/ajot.2013.006015.
    1. Otten P., Kim J., Son S. H. A framework to automate assessment of upper-limb motor function impairment: a feasibility study. Sensors. 2015;15(12):20097–20114. doi: 10.3390/s150820097.
    1. Oña E. D., Jardón A., Balaguer C. The automated box and blocks test an autonomous assessment method of gross manual dexterity in stroke rehabilitation. In: Gao Y., Fallah S., Jin Y., Lekakou C., editors. Towards Autonomous Robotic Systems. Cham: Springer; 2017. pp. 101–114. (Lecture Notes in Computer Science).
    1. Hobart J., Lamping D., Freeman J., et al. Evidence-based measurement which disability scale for neurologic rehabilitation? Neurology. 2001;57(4):639–644. doi: 10.1212/WNL.57.4.639.
    1. Semigran H. L., Levine D. M., Nundy S., Mehrotra A. Comparison of physician and computer diagnostic accuracy. JAMA Internal Medicine. 2016;176(12):1860–1861. doi: 10.1001/jamainternmed.2016.6001.
    1. Krebs H. I., Palazzolo J. J., Dipietro L., et al. Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonomous Robots. 2003;15(1):7–20. doi: 10.1023/A:1024494031121.
    1. Roijers D. M., Whiteson S. Multi-objective decision making. Synthesis Lectures on Artificial Intelligence and Machine Learning. 2017;11(1):1–129. doi: 10.2200/s00765ed1v01y201704aim034.
    1. Ellis M. D., Sukal-Moulton T. M., Dewald J. Impairment-based 3-D robotic intervention improves upper extremity work area in chronic stroke: targeting abnormal joint torque coupling with progressive shoulder abduction loading. IEEE Transactions on Robotics. 2009;25(3):549–555. doi: 10.1109/TRO.2009.2017111.
    1. Kahn L. E., Zygman M. L., Rymer W. Z., Reinkensmeyer D. J. Robotassisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. Journal of Neuroengineering and Rehabilitation. 2006;3(1):p. 12. doi: 10.1186/1743-0003-3-12.
    1. Reinkensmeyer D. J., Kahn L. E., Averbuch M., McKenna-Cole A., Schmit B. D., Rymer W. Z. Understanding and treating arm movement impairment after chronic brain injury: progress with the arm guide. Journal of Rehabilitation Research and Development. 2000;37:p. 653.
    1. Casadio M., Sanguineti V., Morasso P. G., Arrichiello V. Braccio di ferro: a new haptic workstation for neuromotor rehabilitation. Technology and Health Care. 2006;14(3):123–142.
    1. Vergaro E., Casadio M., Squeri V., Giannoni P., Morasso P., Sanguineti V. Self-adaptive robot training of stroke survivors for continuous tracking movements. Journal of Neuroengineering and Rehabilitation. 2010;7(1):p. 13. doi: 10.1186/1743-0003-7-13.
    1. Loureiro R., Amirabdollahian F., Topping M., Driessen B., Harwin W. Upper limb robot mediated stroke therapy—gentle/s approach. Autonomous Robots. 2003;15(1):35–51. doi: 10.1023/A:1024436732030.
    1. Coote S., Murphy B., Harwin W., Stokes E. The effect of the gentle/s robot-mediated therapy system on arm function after stroke. Clinical Rehabilitation. 2008;22(5):395–405. doi: 10.1177/0269215507085060.
    1. Bionik Laboratories Corp. 2010. October 2017,
    1. Jackson A. E., Culmer P. R., Levesley M. C., Makower S. G., Cozens J. A., Bhakta B. B. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke. 2011 IEEE International Conference on Rehabilitation Robotics; 2011; Zurich, Switzerland. pp. 1–6.
    1. Jackson A., Culmer P., Makower S., et al. Initial patient testing of ipam a robotic system for stroke rehabilitation. 2007 IEEE 10th International Conference on Rehabilitation Robotics; 2007; Noordwijk, Netherlands. pp. 250–256.
    1. Micera S., Sergi P. N., Zaccone F., et al. A low-cost biomechatronic system for the restoration and assessment of upper limb motor function in hemiparetic subjects. 2006 The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics; 2006; Pisa, Italy. BioRob; pp. 25–30.
    1. Colombo R., Pisano F., Micera S., et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005;13(3):311–324. doi: 10.1109/TNSRE.2005.848352.
    1. Lum P. S., Burgar C. G., Van der Loos M., Shor P. C., Majmundar M., Yap R. Mime robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. The Journal of Rehabilitation Research and Development. 2006;43(5):631–642. doi: 10.1682/JRRD.2005.02.0044.
    1. Masiero S., Armani M., Rosati G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. Journal of Rehabilitation Research and Development. 2011;48(4):355–366. doi: 10.1682/JRRD.2010.04.0063.
    1. Masiero S., Armani M., Ferlini G., Rosati G., Rossi A. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabilitation and Neural Repair. 2014;28(4):377–386. doi: 10.1177/1545968313513073. 24316679.
    1. Toth A., Fazekas G., Arz G., Jurak M., Horvath M. Passive robotic movement therapy of the spastic hemiparetic arm with reharob: report of the first clinical test and the follow-up system improvement. 2005 9th International Conference on Rehabilitation Robotics; 2005; Chicago, IL, USA. ICORR; pp. 127–130.
    1. Fazekas G., Horvath M., Troznai T., Toth A. Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. Journal of Rehabilitation Medicine. 2007;39(7):580–582. doi: 10.2340/16501977-0087.
    1. Tyromotion gmbh. 2007. October 2017,
    1. Sale P., Lombardi V., Franceschini M. Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Research and Treatment. 2012;2012:5. doi: 10.1155/2012/820931.
    1. Hwang C. H., Seong J. W., Son D.-S. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clinical Rehabilitation. 2012;26(8):696–704. doi: 10.1177/0269215511431473.
    1. Hesse S., Schulte-Tigges G., Konrad M., Bardeleben A., Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Archives of Physical Medicine and Rehabilitation. 2003;84(6):915–920. doi: 10.1016/S0003-9993(02)04954-7.
    1. Schmidt H., Hesse S., Werner C., Bardeleben A. Upper and lower extremity robotic devices to promote motor recovery after stroke -recent developments. 2004 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2004; San Francisco, CA, USA. pp. 4825–4828.
    1. Takahashi C. D., Der-Yeghiaian L., Le V. H., Cramer S. C. A robotic device for hand motor therapy after stroke. 2005 9th International Conference on Rehabilitation Robotics; 2005; Chicago, IL, USA. ICORR; pp. 17–20.
    1. Takahashi C. D., Der-Yeghiaian L., Le V., Motiwala R. R., Cramer S. C. Robot-based hand motor therapy after stroke. Brain. 2008;131(2):425–437. doi: 10.1093/brain/awm311.
    1. Motorika medical ltd. 2004. October 2017,
    1. Treger I., Faran S., Ring H. Robot-assisted therapy for neuromuscular training of sub-acute stroke patients. A feasibility study. European Journal of Physical and Rehabilitation Medicine. 2008;44(4):431–435.
    1. Meyer-Rachner P., Passon A., Klauer C., Schauer T. Compensating the effects of fes-induced muscle fatigue by rehabilitation robotics during arm weight support. Current Directions in Biomedical Engineering. 2017;3:31–34. doi: 10.1515/cdbme-2017-0007.
    1. Montagner A., Frisoli A., Borelli L., et al. A pilot clinical study on robotic assisted rehabilitation in vr with an arm exoskeleton device. 2007 Virtual Rehabilitation; 2007; Venice, Italy. pp. 57–64.
    1. Myomo, inc. 2017. October 2017,
    1. Page S. J., Hill V., White S. Portable upper extremity robotics is as efficacious as upper extremity rehabilitative therapy: a randomized controlled pilot trial. Clinical Rehabilitation. 2013;27(6):494–503. doi: 10.1177/0269215512464795.
    1. Kim G. J., Rivera L., Stein J. Combined clinic-home approach for upper limb robotic therapy after stroke: a pilot study. Archives of Physical Medicine and Rehabilitation. 2015;96(12):2243–2248. doi: 10.1016/j.apmr.2015.06.019.
    1. Rahman T., Sample W., Jayakumar S., et al. Passive exoskeletons for assisting limb movement. Journal of Rehabilitation Research and Development. 2006;43(5):583–590. doi: 10.1682/JRRD.2005.04.0070.
    1. Hocoma. 1996. October 2017,
    1. Gijbels D., Lamers I., Kerkhofs L., Alders G., Knippenberg E., Feys P. The armeo spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. Journal of Neuroengineering and Rehabilitation. 2011;8(1):p. 5. doi: 10.1186/1743-0003-8-5.
    1. Sanchez R. J., Liu J., Rao S., et al. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006;14(3):378–389. doi: 10.1109/TNSRE.2006.881553.
    1. Motus nova. 2016. October 2017,
    1. Kutner N. G., Zhang R., Butler A. J., Wolf S. L., Alberts J. L. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Physical Therapy. 2010;90(4):493–504. doi: 10.2522/ptj.20090160.
    1. Koeneman E. J., Schultz R. S., Wolf S. L., Herring D. E., Koeneman J. B. A pneumatic muscle hand therapy device. 2004 The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2004; San Francisco, CA, USA. pp. 2711–2713.
    1. Schabowsky C. N., Godfrey S. B., Holley R. J., Lum P. S. Development and pilot testing of hexorr: hand exoskeleton rehabilitation robot. Journal of Neuroengineering and Rehabilitation. 2010;7(1):p. 36. doi: 10.1186/1743-0003-7-36.
    1. Bouzit M., Burdea G., Popescu G., Boian R. The rutgers master ii-new design force-feedback glove. IEEE/ASME Transactions on Mechatronics. 2002;7(2):256–263. doi: 10.1109/TMECH.2002.1011262.
    1. Merians A., Jack D., Boian R., et al. Virtual reality-augmented rehabilitation for patients following stroke. Physical Therapy. 2002;82:898–915. doi: 10.1093/ptj/82.9.898.
    1. Allington J., Spencer S. J., Klein J., Buell M., Reinkensmeyer D. J., Bobrow J. Supinator extender (sue): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011; Boston, MA, USA. pp. 1579–1582.
    1. Sanchez R., Reinkensmeyer D., Shah P., et al. Monitoring functional arm movement for home-based therapy after stroke. 2004 The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2004; San Francisco, CA, USA. pp. 4787–4790.
    1. Rocon E., Belda-Lois J. M., Ruiz A. F., Manto M., Moreno J. C., Pons J. L. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007;15(3):367–378. doi: 10.1109/TNSRE.2007.903917.
    1. Nef T., Riener R. Shoulder actuation mechanisms for arm rehabilitation exoskeletons. 2008 2nd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics; 2008; Scottsdale, AZ, USA. pp. 862–868.
    1. Guidali M., Duschau-Wicke A., Broggi S., Klamroth-Marganska V., Nef T., Riener R. A robotic system to train activities of daily living in a virtual environment. Medical & Biological Engineering & Computing. 2011;49(10):1213–1223. doi: 10.1007/s11517-011-0809-0.
    1. Nef T., Mihelj M., Colombo G., Riener R. Armin - robot for rehabilitation of the upper extremities. Proceedings 2006 IEEE International Conference on Robotics and Automation; 2006; Orlando, FL, USA. pp. 3152–3157.
    1. Nef T., Mihelj M., Riener R. Armin: a robot for patient-cooperative arm therapy. Medical & Biological Engineering & Computing. 2007;45(9):887–900. doi: 10.1007/s11517-007-0226-6.
    1. Loureiro R. C. V., Harwin W. S. Reach & grasp therapy: Design and control of a 9-dof robotic neuro-rehabilitation system. 2007 IEEE 10th International Conference on Rehabilitation Robotics; 2007; Noordwijk, Netherlands. pp. 757–763.
    1. Huang J., Tu X., He J. Design and evaluation of the rupert wearable upper extremity exoskeleton robot for clinical and in-home therapies. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2016;46(7):926–935. doi: 10.1109/TSMC.2015.2497205.
    1. Balasubramanian S., Wei R., Perez M., et al. 2008 Virtual Rehabilitation. Canada: Vancouver; 2008. Rupert: an exoskeleton robot for assisting rehabilitation of arm functions; pp. 163–167.

Source: PubMed

3
S'abonner