Classification of Salmonella enterica of the (Para-)Typhoid Fever Group by Fourier-Transform Infrared (FTIR) Spectroscopy

Miriam Cordovana, Norman Mauder, Markus Kostrzewa, Andreas Wille, Sandra Rojak, Ralf Matthias Hagen, Simone Ambretti, Stefano Pongolini, Laura Soliani, Ulrik S Justesen, Hanne M Holt, Olivier Join-Lambert, Simon Le Hello, Michel Auzou, Alida C Veloo, Jürgen May, Hagen Frickmann, Denise Dekker, Miriam Cordovana, Norman Mauder, Markus Kostrzewa, Andreas Wille, Sandra Rojak, Ralf Matthias Hagen, Simone Ambretti, Stefano Pongolini, Laura Soliani, Ulrik S Justesen, Hanne M Holt, Olivier Join-Lambert, Simon Le Hello, Michel Auzou, Alida C Veloo, Jürgen May, Hagen Frickmann, Denise Dekker

Abstract

Typhoidal and para-typhoidal Salmonella are major causes of bacteraemia in resource-limited countries. Diagnostic alternatives to laborious and resource-demanding serotyping are essential. Fourier transform infrared spectroscopy (FTIRS) is a rapidly developing and simple bacterial typing technology. In this study, we assessed the discriminatory power of the FTIRS-based IR Biotyper (Bruker Daltonik GmbH, Bremen, Germany), for the rapid and reliable identification of biochemically confirmed typhoid and paratyphoid fever-associated Salmonella isolates. In total, 359 isolates, comprising 30 S. Typhi, 23 S. Paratyphi A, 23 S. Paratyphi B, and 7 S. Paratyphi C, respectively and other phylogenetically closely related Salmonella serovars belonging to the serogroups O:2, O:4, O:7 and O:9 were tested. The strains were derived from clinical, environmental and food samples collected at different European sites. Applying artificial neural networks, specific automated classifiers were built to discriminate typhoidal serovars from non-typhoidal serovars within each of the four serogroups. The accuracy of the classifiers was 99.9%, 87.0%, 99.5% and 99.0% for Salmonella Typhi, Salmonella Paratyphi A, B and Salmonella Paratyphi C, respectively. The IR Biotyper is a promising tool for fast and reliable detection of typhoidal Salmonella. Hence, IR biotyping may serve as a suitable alternative to conventional approaches for surveillance and diagnostic purposes.

Keywords: FTIR-spectroscopy; IR Biotyper; Paratyphi; Salmonella; Salmonella typing; Typhi; diagnostics; test evaluation.

Conflict of interest statement

Miriam Cordovana, Norman Mauder and Markus Kostrzewa are employees of the company Bruker Daltonic GmbH. There are no conflicts of interest.

Figures

Figure 1
Figure 1
PCA of the O:2 serogroup (blue = Paratyphi A, yellow = other serovars).
Figure 2
Figure 2
PCA of the O:4 serogroup (blue = Paratyphi B, yellow = other serovars).
Figure 3
Figure 3
PCA of the O:7 serogroup (blue = Paratyphi C, yellow = other serovars).
Figure 4
Figure 4
PCA of the O:8 serogroup (blue = Typhi, yellow = other serovars).
Figure 5
Figure 5
LDA of the O:2 serogroup (blue = Paratyphi A, yellow = other serovars).
Figure 6
Figure 6
LDA of the O:4 serogroup (blue = Paratyphi B, yellow = other serovars).
Figure 7
Figure 7
LDA of the O:7 serogroup (blue = Paratyphi C, yellow = other serovars).
Figure 8
Figure 8
LDA of the O:9 serogroup (blue = Typhi, yellow = other serovars).

References

    1. Diekema D.J., Hsueh P.R., Mendes R.E., Pfaller M.A., Rolston K.V., Sader H.S., Jones R.N. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents. Chemother. 2019;63:e00355-19. doi: 10.1128/AAC.00355-19.
    1. Morpeth S.C., Ramadhani H.O., Crump J.A. Invasive non-Typhi Salmonella disease in Africa. Clin. Infect. Dis. 2009;49:606–611. doi: 10.1086/603553.
    1. Reddy E.A., Shaw A.V., Crump J.A. Community-acquired bloodstream infections in Africa: A systematic review and meta-analysis. Lancet Infect. Dis. 2010;10:417–432. doi: 10.1016/S1473-3099(10)70072-4.
    1. Gordon M.A. Invasive nontyphoidal Salmonella disease: Epidemiology, pathogenesis and diagnosis. Curr. Opin. Infect. Dis. 2011;24:484–489. doi: 10.1097/QCO.0b013e32834a9980.
    1. Deen J., von Seidlein L., Andersen F., Elle N., White N.J., Lubell Y. Community-acquired bacterial bloodstream infections in developing countries in south and southeast Asia: A systematic review. Lancet Infect. Dis. 2012;12:480–487. doi: 10.1016/S1473-3099(12)70028-2.
    1. Fierer J., Swancutt M. Non-typhoid Salmonella: A review. Curr. Clin. Top. Infect. Dis. 2000;20:134–157.
    1. Wain J., Hendriksen R.S., Mikoleit M.L., Keddy K.H., Ochiai R.L. Typhoid fever. Lancet. 2015;385:1136–1145. doi: 10.1016/S0140-6736(13)62708-7.
    1. Dougan G., Baker S. Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu. Rev. Microbiol. 2014;68:317–336. doi: 10.1146/annurev-micro-091313-103739.
    1. Kim J.H., Im J., Parajulee P., Holm M., Cruz Espinoza L.M., Poudyal N., Mogeni O.D., Marks F. A Systematic Review of Typhoid Fever Occurrence in Africa. Clin. Infect. Dis. 2019;69(Suppl. 6):S492–S498. doi: 10.1093/cid/ciz525.
    1. Mutua J.M., Wang F.B., Vaidya N.K. Modeling malaria and typhoid fever co-infection dynamics. Math. Biosci. 2015;264:128–144. doi: 10.1016/j.mbs.2015.03.014.
    1. Gibani M.M., Britto C., Pollard A.J. Typhoid and paratyphoid fever: A call to action. Curr. Opin. Infect. Dis. 2018;31:440–448. doi: 10.1097/QCO.0000000000000479.
    1. Fangtham M., Wilde H. Emergence of Salmonella paratyphi A as a major cause of enteric fever: Need for early detection, preventive measures, and effective vaccines. J. Travel Med. 2008;15:344–350. doi: 10.1111/j.1708-8305.2008.00237.x.
    1. Sahastrabuddhe S., Carbis R., Wierzba T.F., Ochiai R.L. Increasing rates of Salmonella Paratyphi A and the current status of its vaccine development. Expert. Rev. Vaccines. 2013;12:1021–1031. doi: 10.1586/14760584.2013.825450.
    1. Arndt M.B., Mosites E.M., Tian M., Forouzanfar M.H., Mokhdad A.H., Meller M., Ochiai R.L., Walson J.L. Estimating the burden of paratyphoid a in Asia and Africa. PLoS Negl. Trop. Dis. 2014;8:e2925. doi: 10.1371/journal.pntd.0002925.
    1. Jacobs M.R., Koornhof H.J., Crisp S.I., Palmhert H.L., Fitzstephens A. Enteric fever caused by Salmonella paratyphi C in South and South West Africa. S. Afr. Med. J. 1978;54:434–438.
    1. Fuche F.J., Sen S., Jones J.A., Nkeze J., Permala-Booth J., Tapia M.D., Sow S.O., Tamboura B., Touré A., Onwuchekwa U., et al. Characterization of Invasive Salmonella Serogroup C1 Infections in Mali. Am. J. Trop. Med. Hyg. 2018;98:589–594. doi: 10.4269/ajtmh.17-0508.
    1. Luby S.P., Saha S., Andrews J.R. Towards sustainable public health surveillance for enteric fever. Vaccine. 2015;33(Suppl. 3):C3–C7. doi: 10.1016/j.vaccine.2015.02.054.
    1. Selander R.K., Beltran P., Smith N.H., Barker R.M., Crichton P.B., Old D.C., Musser J.M., Whittam T.S. Genetic population structure, clonal phylogeny, and pathogenicity of Salmonella paratyphi B. Infect. Immun. 1990;58:1891–1901. doi: 10.1128/IAI.58.6.1891-1901.1990.
    1. Huehn S., Helmuth R., Bunge C., Guerra B., Junker E., Davies R.H., Wattiau P., van Pelt W., Malorny B. Characterization of pathogenic and resistant genome repertoire reveals two clonal lines in Salmonella enterica subsp. enterica serovar Paratyphi B (+)-tartrate positive. Foodborne Pathog. Dis. 2009;6:431–443. doi: 10.1089/fpd.2008.0221.
    1. Barker R.M., Kearney G.M., Nicholson P., Blair A.L., Porter R.C., Crichton P.B. Types of Salmonella paratyphi B and their phylogenetic significance. J. Med. Microbiol. 1988;26:285–293. doi: 10.1099/00222615-26-4-285.
    1. Doublet B., Praud K., Nguyen-Ho-Bao T., Argudín M.A., Bertrand S., Butaye P., Cloeckaert A. Extended-spectrum β-lactamase- and AmpC β-lactamase-producing D-tartrate-positive Salmonella enterica serovar Paratyphi B from broilers and human patients in Belgium, 2008–2010. J. Antimicrob. Chemother. 2014;69:1257–1264. doi: 10.1093/jac/dkt504.
    1. Toboldt A., Tietze E., Helmuth R., Fruth A., Junker E., Malorny B. Human infections attributable to the D-tartrate-fermenting variant of Salmonella enterica serovar Paratyphi B in Germany originate in reptiles and, on rare occasions, poultry. Appl. Environ. Microbiol. 2012;78:7347–7357. doi: 10.1128/AEM.01732-12.
    1. Andrews J.R., Ryan E.T. Diagnostics for invasive Salmonella infections: Current challenges and future directions. Vaccine. 2015;33(Suppl. 3):C8–C15. doi: 10.1016/j.vaccine.2015.02.030.
    1. Das S., Ray U., Akhter I., Chattopadhyay A., Paul D.K., Dutta S. Evaluation of fliC-d based direct blood PCR assays for typhoid diagnosis. BMC Microbiol. 2016;16:108. doi: 10.1186/s12866-016-0723-6.
    1. Tennant S.M., Toema D., Qamar F., Iqbal N., Boyd M.A., Marshall J.M., Blackwelder W.C., Wu Y., Quadri F., Khan A., et al. Detection of Typhoidal and Paratyphoidal Salmonella in Blood by Real-time Polymerase Chain Reaction. Clin. Infect. Dis. 2015;61(Suppl. 4):S241–S250. doi: 10.1093/cid/civ726.
    1. Hirose K., Itoh K., Nakajima H., Kurazono T., Yamaguchi M., Moriya K., Ezaki T., Kawamura Y., Tamura K., Watanabe H. Selective amplification of tyv (rfbE), prt (rfbS), viaB, and fliC genes by multiplex PCR for identification of Salmonella enterica serovars Typhi and Paratyphi, A.J. Clin. Microbiol. 2002;40:633–636. doi: 10.1128/JCM.40.02.633-636.2002.
    1. Woods D.F., Reen F.J., Gilroy D., Buckley J., Frye J.G., Boyd E.F. Rapid multiplex PCR and real-time TaqMan PCR assays for detection of Salmonella enterica and the highly virulent serovars Choleraesuis and Paratyphi, C.J. Clin. Microbiol. 2008;46:4018–4022. doi: 10.1128/JCM.01229-08.
    1. Ngan G.J., Ng L.M., Lin R.T., Teo J.W. Development of a novel multiplex PCR for the detection and differentiation of Salmonella enterica serovars Typhi and Paratyphi, A. Res. Microbiol. 2010;161:243–248. doi: 10.1016/j.resmic.2010.03.005.
    1. Nga T.V., Karkey A., Dongol S., Thuy H.N., Dunstan S., Holt K., Tu le T.P., Campbell J.I., Chau T.T., Chau N.V., et al. The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens. BMC Infect. Dis. 2010;10:125. doi: 10.1186/1471-2334-10-125.
    1. Lin Y., Shi X., Zhu Y., Qiu Y., Li Y., Lv D., Hu Q. Development of modified molecular beacon based real-time PCR assay for the rapid detection of Salmonella choleraesuis and Salmonella paratyphi C. Wei Sheng Yan Jiu. 2011;40:514–516.
    1. Xu L., Yuan M., Sun W., Ke B., Hong Y. Taq Man probe-based quadruple real-time PCR for detection of Salmonella paratyphi A/B/C and Salmonella typhi. Wei Sheng Yan Jiu. 2017;46:298–302.
    1. Zhai L., Yu Q., Bie X., Lu Z., Lv F., Zhang C., Kong X., Zhao H. Development of a PCR test system for specific detection of Salmonella Paratyphi B in foods. FEMS Microbiol. Lett. 2014;355:83–89. doi: 10.1111/1574-6968.12443.
    1. Abdullah J., Saffie N., Sjasri F.A., Husin A., Abdul-Rahman Z., Ismail A., Aziah I., Mohamed M. Rapid detection of Salmonella Typhi by loop-mediated isothermal amplification (LAMP) method. Braz. J. Microbiol. 2015;45:1385–1391. doi: 10.1590/S1517-83822014000400032.
    1. Fan F., Du P., Kan B., Yan M. The Development and Evaluation of a Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Salmonella enterica serovar Typhi. PLoS ONE. 2015;10:e0124507. doi: 10.1371/journal.pone.0124507.
    1. Fan F., Yan M., Du P., Chen C., Kan B. Rapid and Sensitive Salmonella Typhi Detection in Blood and Fecal Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification. Foodborne Pathog. Dis. 2015;12:778–786. doi: 10.1089/fpd.2015.1950.
    1. Kaur A., Das R., Nigam M.R., Elangovan R., Pandya D., Jha S., Kalyanasundaram D. Rapid Detection Device for Salmonella typhi in Milk, Juice, Water and Calf Serum. Indian. J. Microbiol. 2018;58:381–392.
    1. Kaur A., Kapil A., Elangovan R., Jha S., Kalyanasundaram D. Highly-sensitive detection of Salmonella typhi in clinical blood samples by magnetic nanoparticle-based enrichment and in-situ measurement of isothermal amplification of nucleic acids. PLoS ONE. 2018;13:e0194817.
    1. Rojak S., Wiemer D.F., Wille A., Loderstädt U., Wassill L., Hinz R., Hagen R.M., Frickmann H. Loop-mediated isothermal amplification for paratyphoid fever—A proof-of-principle analysis. Lett. Appl. Microbiol. 2019;68:509–513. doi: 10.1111/lam.13130.
    1. Frickmann H., Wiemer D.F., Wassill L., Hinz R., Rojak S., Wille A., Loderstädt U., Schwarz N.G., von Kalckreuth V., Im J., et al. Loop-mediated isothermal amplification-based detection of typhoid fever on an automated Genie II Mk2 system—A case-control-based approach. Acta Trop. 2019;190:293–295. doi: 10.1016/j.actatropica.2018.12.004.
    1. Liu W.Q., Feng Y., Wang Y., Zou Q.H., Chen F., Guo J.T., Peng Y.H., Jin Y., Li Y.G., Hu S.N., et al. Salmonella paratyphi C: Genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS ONE. 2009;4:e4510. doi: 10.1371/journal.pone.0004510.
    1. Kuhns M., Zautner A.E., Rabsch W., Zimmermann O., Weig M., Bader O., Groß U. Rapid discrimination of Salmonella enterica serovar Typhi from other serovars by MALDI-TOF mass spectrometry. PLoS ONE. 2012;7:e40004. doi: 10.1371/journal.pone.0040004.
    1. Baker M.J., Trevisan J., Bassan P., Bhargava R., Butler H.J., Dorling K.M., Fielden P.R., Fogarty S.W., Fullwood N.J., Heys K.A., et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 2014:1771–1791. doi: 10.1038/nprot.2014.110.
    1. Naumann D., Helm D., Labischinski H. Microbiological characterization by FT-IR spectroscopy. Nature. 1991;351:81–82. doi: 10.1038/351081a0.
    1. Helm D., Labischinski H., Schallehn G., Naumann D. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J. Gen. Microbiol. 1991;137:69–79. doi: 10.1099/00221287-137-1-69.
    1. Lasch P., Naumann D. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd.; Chichester, UK: 2015. Infrared spectroscopy in microbiology; pp. 1–32.
    1. Vogt S., Löffler K., Dinkelacker A.G., Bader B., Autenrieth I.B., Peter S., Liese J. Fourier-Transform Infrared (FTIR) Spectroscopy for Typing of Clinical Enterobacter cloacae Complex Isolates. Front. Microbiol. 2019;10:2582. doi: 10.3389/fmicb.2019.02582.
    1. Martak D., Valot B., Sauget M., Cholley P., Thouverez M., Bertrand X., Hocquet D. Fourier-Transform InfraRed Spectroscopy Can Quickly Type Gram-Negative Bacilli Responsible for Hospital Outbreaks. Front. Microbiol. 2019;10:1440. doi: 10.3389/fmicb.2019.01440.
    1. Dinkelacker A.G., Vogt S., Oberhettinger P., Mauder N., Rau J., Kostrzewa M., Rossen J.W.A., Autenrieth I.B., Peter S., Liese J. Typing and Species Identification of Clinical Klebsiella Isolates by Fourier Transform Infrared Spectroscopy and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2018;56:e00843-18. doi: 10.1128/JCM.00843-18.
    1. Burckhardt I., Sebastian K., Mauder N., Kostrzewa M., Burckhardt F., Zimmermann S. Analysis of Streptococcus pneumoniae using Fourier-transformed infrared spectroscopy allows prediction of capsular serotype. Eur. J. Clin. Microbiol. Infect. Dis. 2019;38:1883–1890. doi: 10.1007/s10096-019-03622-y.
    1. Song J., Jongmans-Hochschulz E., Mauder N., Imirzalioglu C., Wichels A., Gerdts G. The Travelling Particles: Investigating microplastics as possible transport vectors for multidrug resistant E. coli in the Weser estuary (Germany) Sci. Total. Environ. 2020;720:137603. doi: 10.1016/j.scitotenv.2020.137603.
    1. Rodrigues C., Sousa C., Lopes J.A., Novais Â., Peixe L. A Front Line on Klebsiella pneumoniae Capsular Polysaccharide Knowledge: Fourier Transform Infrared Spectroscopy as an Accurate and Fast Typing Tool. mSystems. 2020;5:e00386-19. doi: 10.1128/mSystems.00386-19.
    1. Hu Y., Zhou H., Lu J., Sun Q., Liu C., Zeng Y., Zhang R. Evaluation of the IR Biotyper for Klebsiella pneumoniae typing and its potentials in hospital hygiene management. Microb. Biotechnol. 2020;18 doi: 10.1111/1751-7915.13709.
    1. Kim S., Kim H., Reuhs B.L., Mauer L.J. Differentiation of Outer Membrane Proteins from Salmonella enterica Serotypes Using Fourier Transform Infrared Spectroscopy and Chemometrics. Lett. Appl. Microbiol. 2006;42:229–234. doi: 10.1111/j.1472-765X.2005.01828.x.
    1. Männing A., Baldauf N.A., Rodriguez-Romo L.A., Yousef A.E., Rodríguez-Saona L.E. Differentiation of Salmonella Enterica Serovars and Strains in Cultures and Food Using Infrared Spectroscopic and Microspectroscopic Techniques Combined With Soft Independent Modeling of Class Analogy Pattern Recognition Analysis. J. Food Prot. 2008;71:2249–2256. doi: 10.4315/0362-028X-71.11.2249.
    1. De Lamo-Castellví S., Männing A., Rodríguez-Saona L.E. Fourier-transform Infrared Spectroscopy Combined With Immunomagnetic Separation as a Tool to Discriminate Salmonella Serovars. Analyst. 2010;135:2987–2992. doi: 10.1039/c0an00497a.
    1. Preisner O., Guiomar R., Machado J., Menezes J.C., Lopes J.A. Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica serovar Enteritidis phage types. Appl. Environm. Microbiol. 2010;76:3538–3544. doi: 10.1128/AEM.01589-09.
    1. Sundaram J., Park B., Hinton A., Jr., Yoon S.C., Windham W.R., Lawrence K.C. Classification and structural analysis of live and dead Salmonella cells using Fourier transform infrared spectroscopy and principal component analysis. J. Agric. Food Chem. 2012;60:991–1004. doi: 10.1021/jf204081g.
    1. Campos J., Sousa C., Mourão J., Lopez J., Antunes P., Peixe L. Discrimination of non-typhoid Salmonella serogroups and serotypes by Fourier Transform Infrared Spectroscopy: A comprehensive analysis. Int. J. Food Microbiol. 2018;285:34–41. doi: 10.1016/j.ijfoodmicro.2018.07.005.
    1. Grimont P.A., Weill F.X. Antigenic Formulae of the Salmonella Serovars. WHO Collaborating Center for Reference and Research on Salmonella; Paris, France: 2007.
    1. Ashton P.M., Nair S., Peters T.M., Bale J.A., Powell D.G., Painset A., Tewolde R., Schaefer U., Jenkins C., Dallman T.J., et al. Salmonella Whole Genome Sequencing Implementation Group. Identification of Salmonella for public health surveillance using whole genome sequencing. PeerJ. 2016;4:e1752. doi: 10.7717/peerj.1752.
    1. Ibrahim G.M., Morin P.M. Salmonella Serotyping Using Whole Genome Sequencing. Front. Microbiol. 2018;9:2993. doi: 10.3389/fmicb.2018.02993.
    1. Yachison C.A., Yoshida C., Robertson J., Nash J.H.E., Kruczkiewicz P., Taboada E.N., Walker M., Reimer A., Christianson S., Nichani A. PulseNet Canada Steering Committee, Nadon, C. The Validation and Implications of Using Whole Genome Sequencing as a Replacement for Traditional Serotyping for a National Salmonella Reference Laboratory. Front. Microbiol. 2017;8:1044. doi: 10.3389/fmicb.2017.01044.
    1. Ribot E.M., Fair M.A., Gautom R., Cameron D.N., Hunter S.B., Swaminathan B., Barret T.J. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog. Dis. 2006;3:59–67. doi: 10.1089/fpd.2006.3.59.
    1. EFSA Panel on Biological Hazards (BIOHAZ) Scientific Opinion on monitoring and assessment of the public health risk of “Salmonella Typhimurium-like” strains. EFSA J. 2010;8:1826. doi: 10.2903/j.efsa.2010.1826.
    1. Tennant S.M., Diallo S., Haim Levy H., Livio S., Sow S.O., Milagritos Tapia M., Fields P.I., Mikoleit M., Tamboura B., Kotloff K.L., et al. Identification by PCR of non-typhoidal Salmonella enterica serovars associated with invasive infections among febrile patients in Mali. PLoS Negl. Trop. Dis. 2010;4:e621. doi: 10.1371/journal.pntd.0000621.
    1. Barco L., Lettini A.A., Ramon E., Longo A., Saccardin C., Pozza M.C., Ricci A. A rapid and sensitive method to identify and differentiate Salmonella enterica serotype Typhimurium and Salmonella enterica serotype 4,[5],12:i:- by combining traditional serotyping and multiplex polymerase chain reaction. Foodborne Pathog. Dis. 2011;8:741–743. doi: 10.1089/fpd.2010.0776.
    1. Rabsch W., Tschäpe H., Bäumler A.J. Non-typhoidal salmonellosis: Emerging problems. Microbes Infect. 2001;3:237–247. doi: 10.1016/S1286-4579(01)01375-2.

Source: PubMed

3
S'abonner