Specialized Pro-Resolving Mediators and the Lymphatic System

Jamie D Kraft, Robert Blomgran, Iben Lundgaard, Marianne Quiding-Järbrink, Jonathan S Bromberg, Emma Börgeson, Jamie D Kraft, Robert Blomgran, Iben Lundgaard, Marianne Quiding-Järbrink, Jonathan S Bromberg, Emma Börgeson

Abstract

Diminished lymphatic function and abnormal morphology are common in chronic inflammatory diseases. Recent studies are investigating whether it is possible to target chronic inflammation by promoting resolution of inflammation, in order to enhance lymphatic function and attenuate disease. Resolution of inflammation is an active process regulated by bioactive lipids known as specialized pro-resolving mediators (SPMs). SPMs can modulate leukocyte migration and function, alter cytokine/chemokine release, modify autophagy, among other immune-related activities. Here, we summarize the role of the lymphatics in resolution of inflammation and lymphatic impairment in chronic inflammatory diseases. Furthermore, we discuss the current literature describing the connection between SPMs and the lymphatics, and the possibility of targeting the lymphatics with innovative SPM therapy to promote resolution of inflammation and mitigate disease.

Keywords: atherosclerosis; dry eye disease; inflammatory bowel disease; lymphatics; lymphoid organs; resolution of inflammation; specialized pro-resolving mediators (SPMs).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Arachidonic acid-derived specialized pro-resolving mediator synthesis. Synthesis of the specialized pro-resolving mediator, lipoxin, requires transcellular biosynthesis (left side). Arachidonic acid receives an oxygen from 15-lipoxygenase (LOX), generating either 15S-hydroperoxyeicosatetraenoic acid (15S-H(p)ETE) or 15S-hydroxyeicosatetraenoic acid (15S-HETE). These metabolites are taken up by neutrophils where 5-LOX generates 5,6-epoxytetraene, an unstable molecule which is hydrolysed into lipoxins. Arachidonic acid can also be metabolized by neutrophils into leukotriene A4 (right side). Upon neutrophil-platelet binding, leukotriene A4 is converted into lipoxins by platelet 12-LOX.

References

    1. Schwager S., Detmar M. Inflammation and lymphatic function. Front. Immunol. 2019;10:308. doi: 10.3389/fimmu.2019.00308.
    1. Choi I., Lee S., Hong Y.-K. The new era of the lymphatic system: No longer secondary to the blood vascular system. Cold Spring Harb. Perspect. Med. 2012;2:a006445. doi: 10.1101/cshperspect.a006445.
    1. Aspelund A., Robciuc M.R., Karaman S., Makinen T., Alitalo K. Lymphatic system in cardiovascular medicine. Circ. Res. 2016;118:515–530. doi: 10.1161/CIRCRESAHA.115.306544.
    1. Kaipainen A., Korhonen J., Mustonen T., van Hinsbergh V.W., Fang G.H., Dumont D., Breitman M., Alitalo K. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA. 1995;92:3566–3570. doi: 10.1073/pnas.92.8.3566.
    1. Hirakawa S., Detmar M., Karaman S. Lymphatics in nanophysiology. Adv. Drug Deliv. Rev. 2014;74:12–18. doi: 10.1016/j.addr.2014.01.011.
    1. Liao S., von der Weid P.Y. Lymphatic system: An active pathway for immune protection. Semin. Cell Dev. Biol. 2015;38:83–89. doi: 10.1016/j.semcdb.2014.11.012.
    1. Goyal S., Chauhan S.K., El Annan J., Nallasamy N., Zhang Q., Dana R. Evidence of corneal lymphangiogenesis in dry eye disease: A potential link to adaptive immunity? Arch. Ophthalmol. 2010;128:819–824. doi: 10.1001/archophthalmol.2010.124.
    1. Mandal R.V., Mark E.J., Kradin R.L. Organizing pneumonia and pulmonary lymphatic architecture in diffuse alveolar damage. Hum. Pathol. 2008;39:1234–1238. doi: 10.1016/j.humpath.2008.01.002.
    1. Fullerton J.N., Gilroy D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov. 2016;15:551–567. doi: 10.1038/nrd.2016.39.
    1. Rosales C. Neutrophil: A cell with many roles in inflammation or several cell types? Front. Physiol. 2018;9:113. doi: 10.3389/fphys.2018.00113.
    1. Li Y., Wang W., Yang F., Xu Y., Feng C., Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun. Signal. 2019;17:147. doi: 10.1186/s12964-019-0471-y.
    1. Headland S.E., Norling L.V. The resolution of inflammation: Principles and challenges. Semin. Immunol. 2015;27:149–160. doi: 10.1016/j.smim.2015.03.014.
    1. Godson C., Mitchell S., Harvey K., Petasis N.A., Hogg N., Brady H.R. Cutting edge: Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 2000;164:1663–1667. doi: 10.4049/jimmunol.164.4.1663.
    1. Schett G., Neurath M.F. Resolution of chronic inflammatory disease: Universal and tissue-specific concepts. Nat. Commun. 2018;9:3261. doi: 10.1038/s41467-018-05800-6.
    1. Lawrence T., Gilroy D.W. Chronic inflammation: A failure of resolution? Int. J. Exp. Pathol. 2007;88:85–94. doi: 10.1111/j.1365-2613.2006.00507.x.
    1. Ungaro F., Rubbino F., Danese S., D’Alessio S. Actors and factors in the resolution of intestinal inflammation: Lipid mediators as a new approach to therapy in inflammatory bowel diseases. Front. Immunol. 2017;8:1331. doi: 10.3389/fimmu.2017.01331.
    1. Jiang X., Tian W., Nicolls M.R., Rockson S.G. The lymphatic system in obesity, insulin resistance, and cardiovascular diseases. Front. Physiol. 2019;10:1402. doi: 10.3389/fphys.2019.01402.
    1. Stump B., Cui Y., Kidambi P., Lamattina A.M., El-Chemaly S. Lymphatic changes in respiratory diseases: More than just remodeling of the lung? Am. J. Respir. Cell Mol. Biol. 2017;57:272–279. doi: 10.1165/rcmb.2016-0290TR.
    1. Alexander J.S., Ganta V.C., Jordan P.A., Witte M.H. Gastrointestinal lymphatics in health and disease. Pathophysiology. 2010;17:315–335. doi: 10.1016/j.pathophys.2009.09.003.
    1. Al-Kofahi M., Yun J.W., Minagar A., Alexander J.S. Anatomy and roles of lymphatics in inflammatory diseases. Clin. Exp. Neuroimmunol. 2017;8:199–214. doi: 10.1111/cen3.12400.
    1. Huggenberger R., Siddiqui S.S., Brander D., Ullmann S., Zimmermann K., Antsiferova M., Werner S., Alitalo K., Detmar M. An important role of lymphatic vessel activation in limiting acute inflammation. Blood. 2011;117:4667–4678. doi: 10.1182/blood-2010-10-316356.
    1. Cifarelli V., Eichmann A. The intestinal lymphatic system: Functions and metabolic implications. Cell Mol. Gastroenterol. Hepatol. 2019;7:503–513. doi: 10.1016/j.jcmgh.2018.12.002.
    1. Dixon J.B., Raghunathan S., Swartz M.A. A tissue-engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics. Biotechnol. Bioeng. 2009;103:1224–1235. doi: 10.1002/bit.22337.
    1. Russo E., Nitschké M., Halin C. Dendritic cell interactions with lymphatic endothelium. Lymphat Res. Biol. 2013;11:172–182. doi: 10.1089/lrb.2013.0008.
    1. Banerji S., Ni J., Wang S.X., Clasper S., Su J., Tammi R., Jones M., Jackson D.G. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 1999;144:789–801. doi: 10.1083/jcb.144.4.789.
    1. Breiteneder-Geleff S., Soleiman A., Kowalski H., Horvat R., Amann G., Kriehuber E., Diem K., Weninger W., Tschachler E., Alitalo K., et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 1999;154:385–394. doi: 10.1016/S0002-9440(10)65285-6.
    1. Wigle J.T., Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–778. doi: 10.1016/S0092-8674(00)81511-1.
    1. Kukk E., Lymboussaki A., Taira S., Kaipainen A., Jeltsch M., Joukov V., Alitalo K. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Dev. Camb. Engl. 1996;122:3829–3837.
    1. Jha S.K., Rauniyar K., Jeltsch M. Key molecules in lymphatic development, function, and identification. Ann. Anat. 2018;219:25–34. doi: 10.1016/j.aanat.2018.05.003.
    1. Dumont D.J., Jussila L., Taipale J., Lymboussaki A., Mustonen T., Pajusola K., Breitman M., Alitalo K. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998;282:946–949. doi: 10.1126/science.282.5390.946.
    1. Partanen T.A., Arola J., Saaristo A., Jussila L., Ora A., Miettinen M., Stacker S.A., Achen M.G., Alitalo K. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB. 2000;14:2087–2096. doi: 10.1096/fj.99-1049com.
    1. Bouta E.M., Bell R.D., Rahimi H., Xing L., Wood R.W., Bingham C.O., III, Ritchlin C.T., Schwarz E.M. Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nat. Rev. Rheumatol. 2018;14:94–106. doi: 10.1038/nrrheum.2017.205.
    1. Alitalo K. The lymphatic vasculature in disease. Nat. Med. 2011;17:1371–1380. doi: 10.1038/nm.2545.
    1. Kim H., Kataru R.P., Koh G.Y. Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol. 2012;33:350–356. doi: 10.1016/j.it.2012.03.006.
    1. Kim H., Kataru R.P., Koh G.Y. Inflammation-associated lymphangiogenesis: A double-edged sword? J. Clin. Investig. 2014;124:936–942. doi: 10.1172/JCI71607.
    1. Karkkainen M.J., Haiko P., Sainio K., Partanen J., Taipale J., Petrova T.V., Jeltsch M., Jackson D.G., Talikka M., Rauvala H., et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 2004;5:74–80. doi: 10.1038/ni1013.
    1. Guo R., Zhou Q., Proulx S.T., Wood R., Ji R.C., Ritchlin C.T., Pytowski B., Zhu Z., Wang Y.J., Schwarz E.M., et al. Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis Rheum. 2009;60:2666–2676. doi: 10.1002/art.24764.
    1. Levick J.R., Michel C.C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 2010;87:198–210. doi: 10.1093/cvr/cvq062.
    1. Srinivasan S., Vannberg F.O., Dixon J.B. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 2016;6:24436. doi: 10.1038/srep24436.
    1. Clement C.C., Rotzschke O., Santambrogio L. The lymph as a pool of self-antigens. Trends Immunol. 2011;32:6–11. doi: 10.1016/j.it.2010.10.004.
    1. Jackson D.G. Leucocyte trafficking via the lymphatic vasculature—Mechanisms and consequences. Front. Immunol. 2019;10:471. doi: 10.3389/fimmu.2019.00471.
    1. Voisin M.B., Nourshargh S. Neutrophil trafficking to lymphoid tissues: Physiological and pathological implications. J. Pathol. 2019;247:662–671. doi: 10.1002/path.5227.
    1. Hampton H.R., Chtanova T. Lymphatic migration of immune cells. Front. Immunol. 2019;10:1168. doi: 10.3389/fimmu.2019.01168.
    1. Card C.M., Yu S.S., Swartz M.A. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J. Clin. Investig. 2014;124:943–952. doi: 10.1172/JCI73316.
    1. Clement C.C., Cannizzo E.S., Nastke M.-D., Sahu R., Olszewski W., Miller N.E., Stern L.J., Santambrogio L. An expanded self-antigen peptidome is carried by the human lymph as compared to the plasma. PLoS ONE. 2010;5:e9863. doi: 10.1371/journal.pone.0009863.
    1. Förster R., Davalos-Misslitz A.C., Rot A. CCR7 and its ligands: Balancing immunity and tolerance. Nat. Rev. Immunol. 2008;8:362–371. doi: 10.1038/nri2297.
    1. Piao W., Xiong Y., Famulski K., Brinkman C.C., Li L., Toney N., Wagner C., Saxena V., Simon T., Bromberg J.S. Regulation of T cell afferent lymphatic migration by targeting LTβR-mediated non-classical NFκB signaling. Nat. Commun. 2018;9:3020. doi: 10.1038/s41467-018-05412-0.
    1. Piao W., Xiong Y., Li L., Saxena V., Smith K.D., Hippen K.L., Paluskievicz C., Willsonshirkey M., Blazar B.R., Abdi R., et al. Regulatory T cells condition lymphatic endothelia for enhanced transendothelial migration. Cell Rep. 2020;30:1052–1062.e1055. doi: 10.1016/j.celrep.2019.12.083.
    1. Schwab J.M., Chiang N., Arita M., Serhan C.N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature. 2007;447:869–874. doi: 10.1038/nature05877.
    1. Aspelund A., Antila S., Proulx S.T., Karlsen T.V., Karaman S., Detmar M., Wiig H., Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 2015;212:991–999. doi: 10.1084/jem.20142290.
    1. Ahn J.H., Cho H., Kim J.-H., Kim S.H., Ham J.-S., Park I., Suh S.H., Hong S.P., Song J.-H., Hong Y.-K., et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572:62–66. doi: 10.1038/s41586-019-1419-5.
    1. Louveau A., Smirnov I., Keyes T.J., Eccles J.D., Rouhani S.J., Peske J.D., Derecki N.C., Castle D., Mandell J.W., Lee K.S., et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–341. doi: 10.1038/nature14432.
    1. Hsu M., Rayasam A., Kijak J.A., Choi Y.H., Harding J.S., Marcus S.A., Karpus W.J., Sandor M., Fabry Z. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat. Commun. 2019;10:229. doi: 10.1038/s41467-018-08163-0.
    1. Esposito E., Ahn B.J., Shi J., Nakamura Y., Park J.H., Mandeville E.T., Yu Z., Chan S.J., Desai R., Hayakawa A., et al. Brain-to-cervical lymph node signaling after stroke. Nat. Commun. 2019;10:5306. doi: 10.1038/s41467-019-13324-w.
    1. Miao Z., Schultzberg M., Wang X., Zhao Y. Role of polyunsaturated fatty acids in ischemic stroke—A perspective of specialized pro-resolving mediators. Clin. Nutr. 2021 doi: 10.1016/j.clnu.2020.12.037.
    1. Serhan C.N. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol. Asp. Med. 2017;58:1–11. doi: 10.1016/j.mam.2017.03.001.
    1. Serhan C.N., Hamberg M., Samuelsson B. Trihydroxytetraenes: A novel series of compounds formed from arachidonic acid in human leukocytes. Biochem. Biophys. Res. Commun. 1984;118:943–949. doi: 10.1016/0006-291X(84)91486-4.
    1. Serhan C.N., Savill J. Resolution of inflammation: The beginning programs the end. Nat. Immunol. 2005;6:1191–1197. doi: 10.1038/ni1276.
    1. Basil M.C., Levy B.D. Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 2016;16:51–67. doi: 10.1038/nri.2015.4.
    1. Serhan C.N., Hamberg M., Samuelsson B. Lipoxins: Novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc. Natl. Acad. Sci. USA. 1984;81:5335–5339. doi: 10.1073/pnas.81.17.5335.
    1. Serhan C.N., Sheppard K.A. Lipoxin formation during human neutrophil-platelet interactions. Evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro. J. Clin. Investig. 1990;85:772–780. doi: 10.1172/JCI114503.
    1. Serhan C.N. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. ProstaglandinsLeukot. Essent. Fat. Acids. 2005;73:141–162. doi: 10.1016/j.plefa.2005.05.002.
    1. Serhan C.N. On the relationship between leukotriene and lipoxin production by human neutrophils: Evidence for differential metabolism of 15-HETE and 5-HETE. Biochim. Et Biophys. Acta Mol. Cell Res. 1989;1004:158–168. doi: 10.1016/0005-2760(89)90264-6.
    1. Brezinski M.E., Serhan C.N. Selective incorporation of (15S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: Agonist-induced deacylation and transformation of stored hydroxyeicosanoids. Proc. Natl. Acad. Sci. USA. 1990;87:6248–6252. doi: 10.1073/pnas.87.16.6248.
    1. Takano T., Fiore S., Maddox J.F., Brady H.R., Petasis N.A., Serhan C.N. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. J. Exp. Med. 1997;185:1693–1704. doi: 10.1084/jem.185.9.1693.
    1. McMahon B., Godson C. Lipoxins: Endogenous regulators of inflammation. Am. J. Physiol. Ren. Physiol. 2004;286:F189–F201. doi: 10.1152/ajprenal.00224.2003.
    1. Shinohara M., Serhan C.N. Novel endogenous proresolving molecules: Essential fatty acid-derived and gaseous mediators in the resolution of inflammation. J. Atheroscler. Thromb. 2016;23:655–664. doi: 10.5551/jat.33928.
    1. Borgeson E., Johnson A.M., Lee Y.S., Till A., Syed G.H., Ali-Shah S.T., Guiry P.J., Dalli J., Colas R.A., Serhan C.N., et al. Lipoxin A4 attenuates obesity-induced adipose inflammation and associated liver and kidney disease. Cell Metab. 2015;22:125–137. doi: 10.1016/j.cmet.2015.05.003.
    1. Serhan C.N., Clish C.B., Brannon J., Colgan S.P., Chiang N., Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 2000;192:1197–1204. doi: 10.1084/jem.192.8.1197.
    1. Arita M., Bianchini F., Aliberti J., Sher A., Chiang N., Hong S., Yang R., Petasis N.A., Serhan C.N. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 2005;201:713–722. doi: 10.1084/jem.20042031.
    1. Campbell E.L., Louis N.A., Tomassetti S.E., Canny G.O., Arita M., Serhan C.N., Colgan S.P. Resolvin E1 promotes mucosal surface clearance of neutrophils: A new paradigm for inflammatory resolution. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2007;21:3162–3170. doi: 10.1096/fj.07-8473com.
    1. Tani Y., Isobe Y., Imoto Y., Segi-Nishida E., Sugimoto Y., Arai H., Arita M. Eosinophils control the resolution of inflammation and draining lymph node hypertrophy through the proresolving mediators and CXCL13 pathway in mice. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2014;28:4036–4043. doi: 10.1096/fj.14-251132.
    1. Hong S., Porter T.F., Lu Y., Oh S.F., Pillai P.S., Serhan C.N. Resolvin E1 metabolome in local inactivation during inflammation-resolution. J. Immunol. 2008;180:3512. doi: 10.4049/jimmunol.180.5.3512.
    1. Oh S.F., Pillai P.S., Recchiuti A., Yang R., Serhan C.N. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J. Clin. Investig. 2011;121:569–581. doi: 10.1172/JCI42545.
    1. Serhan C.N., Chiang N., Dalli J., Levy B.D. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol. 2014;7:a016311. doi: 10.1101/cshperspect.a016311.
    1. Dalli J., Winkler J.W., Colas R.A., Arnardottir H., Cheng C.Y., Chiang N., Petasis N.A., Serhan C.N. Resolvin D3 and aspirin-triggered resolvin D3 are potent immunoresolvents. Chem. Biol. 2013;20:188–201. doi: 10.1016/j.chembiol.2012.11.010.
    1. Ariel A., Li P.L., Wang W., Tang W.X., Fredman G., Hong S., Gotlinger K.H., Serhan C.N. The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J. Biol. Chem. 2005;280:43079–43086. doi: 10.1074/jbc.M509796200.
    1. Wei J., Gronert K. The role of pro-resolving lipid mediators in ocular diseases. Mol. Asp. Med. 2017;58:37–43. doi: 10.1016/j.mam.2017.03.006.
    1. Sugimoto M.A., Sousa L.P., Pinho V., Perretti M., Teixeira M.M. Resolution of inflammation: What controls its onset? Front. Immunol. 2016;7:160. doi: 10.3389/fimmu.2016.00160.
    1. Linton M.F., Yancey P.G., Davies S.S., Jerome W.G., Linton E.F., Song W.L., Doran A.C., Vickers K.C. Endotext—The Role of Lipids and Lipoproteins in Atherosclerosis. , Inc.; South Dartmouth, MA, USA: 2019.
    1. Martel C., Li W., Fulp B., Platt A.M., Gautier E.L., Westerterp M., Bittman R., Tall A.R., Chen S.H., Thomas M.J., et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Investig. 2013;123:1571–1579. doi: 10.1172/JCI63685.
    1. Bergström I.G. Pro-and Anti-Inflammatory Actions in Coronary Artery Dsease with Focus on CD 56 + T Cells and Annexin A 1. Linköping University Electronic Press; Linköping, Sweden: 2015.
    1. Luk E., Gotlieb A.I. Atherosclerosis. In: McManus L.M., Mitchell R.N., editors. Pathobiology of Human Disease. Academic Press; San Diego, CA, USA: 2014. pp. 2970–2985.
    1. Khera A.V., Cuchel M., de la Llera-Moya M., Rodrigues A., Burke M.F., Jafri K., French B.C., Phillips J.A., Mucksavage M.L., Wilensky R.L., et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 2011;364:127–135. doi: 10.1056/NEJMoa1001689.
    1. Lim H.Y., Thiam C.H., Yeo K.P., Bisoendial R., Hii C.S., McGrath K.C., Tan K.W., Heather A., Alexander J.S., Angeli V. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 2013;17:671–684. doi: 10.1016/j.cmet.2013.04.002.
    1. Milasan A., Smaani A., Martel C. Early rescue of lymphatic function limits atherosclerosis progression in Ldlr(−/−) mice. Atherosclerosis. 2019;283:106–119. doi: 10.1016/j.atherosclerosis.2019.01.031.
    1. Vieira J.M., Norman S., Villa Del Campo C., Cahill T.J., Barnette D.N., Gunadasa-Rohling M., Johnson L.A., Greaves D.R., Carr C.A., Jackson D.G., et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J. Clin. Investig. 2018;128:3402–3412. doi: 10.1172/JCI97192.
    1. Henri O., Pouehe C., Houssari M., Galas L., Nicol L., Edwards-Lévy F., Henry J.P., Dumesnil A., Boukhalfa I., Banquet S., et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation. 2016;133:1484–1497. doi: 10.1161/CIRCULATIONAHA.115.020143.
    1. Vuorio T., Ylä-Herttuala E., Laakkonen J.P., Laidinen S., Liimatainen T., Ylä-Herttuala S. Downregulation of VEGFR3 signaling alters cardiac lymphatic vessel organization and leads to a higher mortality after acute myocardial infarction. Sci. Rep. 2018;8:16709. doi: 10.1038/s41598-018-34770-4.
    1. Brakenhielm E., Alitalo K. Cardiac lymphatics in health and disease. Nat. Rev. Cardiol. 2019;16:56–68. doi: 10.1038/s41569-018-0087-8.
    1. Geleff S., Schoppmann S.F., Oberhuber G. Increase in podoplanin-expressing intestinal lymphatic vessels in inflammatory bowel disease. Virchows Arch. Int. J. Pathol. 2003;442:231–237. doi: 10.1007/s00428-002-0744-4.
    1. Pedica F., Ligorio C., Tonelli P., Bartolini S., Baccarini P. Lymphangiogenesis in Crohn’s disease: An immunohistochemical study using monoclonal antibody D2-40. Virchows Arch. 2008;452:57–63. doi: 10.1007/s00428-007-0540-2.
    1. Tonelli F., Giudici F., Liscia G. Is lymphatic status related to regression of inflammation in Crohn’s disease? World J Gastrointest Surg. 2012;4:228–233. doi: 10.4240/wjgs.v4.i10.228.
    1. Rahier J.F., Dubuquoy L., Colombel J.F., Jouret-Mourin A., Delos M., Ferrante M., Sokol H., Hertogh G.D., Salleron J., Geboes K., et al. Decreased lymphatic vessel density is associated with postoperative endoscopic recurrence in Crohn’s disease. Inflamm. Bowel Dis. 2013;19:2084–2090. doi: 10.1097/MIB.0b013e3182971cec.
    1. Kühn R., Löhler J., Rennick D., Rajewsky K., Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–274. doi: 10.1016/0092-8674(93)80068-P.
    1. Spencer D.M., Veldman G.M., Banerjee S., Willis J., Levine A.D. Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology. 2002;122:94–105. doi: 10.1053/gast.2002.30308.
    1. D’Alessio S., Correale C., Tacconi C., Gandelli A., Pietrogrande G., Vetrano S., Genua M., Arena V., Spinelli A., Peyrin-Biroulet L., et al. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J. Clin. Investig. 2014;124:3863–3878. doi: 10.1172/JCI72189.
    1. Jurisic G., Sundberg J.P., Detmar M. Blockade of VEGF receptor-3 aggravates inflammatory bowel disease and lymphatic vessel enlargement. Inflamm. Bowel Dis. 2013;19:1983–1989. doi: 10.1097/MIB.0b013e31829292f7.
    1. Pflugfelder S.C., de Paiva C.S. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology. 2017;124:S4–S13. doi: 10.1016/j.ophtha.2017.07.010.
    1. Plsková J., Holán V., Filipec M., Forrester J.V. Lymph node removal enhances corneal graft survival in mice at high risk of rejection. Bmc Ophthalmol. 2004;4:3. doi: 10.1186/1471-2415-4-3.
    1. Serhan C.N. Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017;31:1273–1288. doi: 10.1096/fj.201601222R.
    1. Colby J.K., Abdulnour R.E., Sham H.P., Dalli J., Colas R.A., Winkler J.W., Hellmann J., Wong B., Cui Y., El-Chemaly S., et al. Resolvin D3 and aspirin-triggered resolvin D3 are protective for injured epithelia. Am. J. Pathol. 2016;186:1801–1813. doi: 10.1016/j.ajpath.2016.03.011.
    1. Jin Y., Arita M., Zhang Q., Saban D.R., Chauhan S.K., Chiang N., Serhan C.N., Dana R. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Investig. Ophthalmol. Vis. Sci. 2009;50:4743–4752. doi: 10.1167/iovs.08-2462.
    1. Kain V., Ingle K.A., Colas R.A., Dalli J., Prabhu S.D., Serhan C.N., Joshi M., Halade G.V. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J. Mol. Cell Cardiol. 2015;84:24–35. doi: 10.1016/j.yjmcc.2015.04.003.
    1. Gao Y., Su J., Zhang Y., Chan A., Sin J.H., Wu D., Min K., Gronert K. Dietary DHA amplifies LXA(4) circuits in tissues and lymph node PMN and is protective in immune-driven dry eye disease. Mucosal. Immunol. 2018;11:1674–1683. doi: 10.1038/s41385-018-0070-z.
    1. Yamada T., Tani Y., Nakanishi H., Taguchi R., Arita M., Arai H. Eosinophils promote resolution of acute peritonitis by producing proresolving mediators in mice. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2011;25:561–568. doi: 10.1096/fj.10-170027.
    1. Colas R.A., Shinohara M., Dalli J., Chiang N., Serhan C.N. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am. J. Physiol. Cell Physiol. 2014;307:C39–C54. doi: 10.1152/ajpcell.00024.2014.
    1. Frolov A., Yang L., Dong H., Hammock B.D., Crofford L.J. Anti-inflammatory properties of prostaglandin E2: Deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice. ProstaglandinsLeukot. Essent. Fat. Acids. 2013;89:351–358. doi: 10.1016/j.plefa.2013.08.003.
    1. Halade G.V., Norris P.C., Kain V., Serhan C.N., Ingle K.A. Splenic leukocytes define the resolution of inflammation in heart failure. Sci. Signal. 2018;11:eaao1818. doi: 10.1126/scisignal.aao1818.
    1. Becker F., Romero E., Goetzmann J., Hasselschwert D.L., Dray B., Vanchiere J., Fontenot J., Yun J.W., Norris P.C., White L., et al. Endogenous specialized proresolving mediator profiles in a novel experimental model of lymphatic obstruction and intestinal inflammation in african green monkeys. Am. J. Pathol. 2019;189:1953–1972. doi: 10.1016/j.ajpath.2019.05.013.
    1. Onali S., Favale A., Fantini M.C. The resolution of intestinal inflammation: The peace-keeper’s perspective. Cells. 2019;8:344. doi: 10.3390/cells8040344.
    1. Wang R.X., Colgan S.P. Special pro-resolving mediator (SPM) actions in regulating gastro-intestinal inflammation and gut mucosal immune responses. Mol. Asp. Med. 2017;58:93–101. doi: 10.1016/j.mam.2017.02.002.
    1. Newson J., Stables M., Karra E., Arce-Vargas F., Quezada S., Motwani M., Mack M., Yona S., Audzevich T., Gilroy D.W. Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood. 2014;124:1748–1764. doi: 10.1182/blood-2014-03-562710.
    1. El-Chemaly S., Levine S.J., Moss J. Lymphatics in lung disease. Ann. N. Y. Acad. Sci. 2008;1131:195–202. doi: 10.1196/annals.1413.017.
    1. Baluk P., Tammela T., Ator E., Lyubynska N., Achen M.G., Hicklin D.J., Jeltsch M., Petrova T.V., Pytowski B., Stacker S.A., et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Investig. 2005;115:247–257. doi: 10.1172/JCI200522037.
    1. Mori M., Andersson C.K., Graham G.J., Löfdahl C.G., Erjefält J.S. Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD. Respir. Res. 2013;14:65. doi: 10.1186/1465-9921-14-65.
    1. Gao Y., Min K., Zhang Y., Su J., Greenwood M., Gronert K. Female-specific downregulation of tissue polymorphonuclear neutrophils drives impaired regulatory T cell and amplified effector T cell responses in autoimmune dry eye disease. J. Immunol. 2015;195:3086–3099. doi: 10.4049/jimmunol.1500610.
    1. Chiang N., Dalli J., Colas R.A., Serhan C.N. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J. Exp. Med. 2015;212:1203–1217. doi: 10.1084/jem.20150225.
    1. Gilroy D.W., Colville-Nash P.R., Willis D., Chivers J., Paul-Clark M.J., Willoughby D.A. Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med. 1999;5:698–701. doi: 10.1038/9550.

Source: PubMed

3
S'abonner