Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application

Romilly E Hodges, Deanna M Minich, Romilly E Hodges, Deanna M Minich

Abstract

Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent.

Figures

Figure 1
Figure 1
Nrf2/Keap1 signaling (created from text in [154]).

References

    1. Baer-Dubowska W., Szaefer H. Modulation of carcinogen-metabolizing cytochromes P450 by phytochemicals in humans. Expert Opinion on Drug Metabolism and Toxicology. 2013;9(8):927–941. doi: 10.1517/17425255.2013.795219.
    1. Steinkellner H., Rabot S., Freywald C., et al. Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutation Research. 2001;480-481:285–297. doi: 10.1016/s0027-5107(01)00188-9.
    1. Moon Y. J., Wang X., Morris M. E. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicology in Vitro. 2006;20(2):187–210. doi: 10.1016/j.tiv.2005.06.048.
    1. Hakooz N., Hamdan I. Effects of dietary broccoli on human in vivo caffeine metabolism: a pilot study on a group of Jordanian volunteers. Current Drug Metabolism. 2007;8(1):9–15. doi: 10.2174/138920007779315080.
    1. James D., Devaraj S., Bellur P., Lakkanna S., Vicini J., Boddupalli S. Novel concepts of broccoli sulforaphanes and disease: induction of phase II antioxidant and detoxification enzymes by enhanced-glucoraphanin broccoli. Nutrition Reviews. 2012;70(11):654–665. doi: 10.1111/j.1753-4887.2012.00532.x.
    1. Aiyer H. S., Gupta R. C. Berries and ellagic acid prevent estrogen-induced mammary tumorigenesis by modulating enzymes of estrogen metabolism. Cancer Prevention Research. 2010;3(6):727–737. doi: 10.1158/1940-6207.CAPR-09-0260.
    1. Bogacz A, Mikołajczak P. Ł., Mikołajczak P. Ł., et al. The influence of soybean extract on the expression level of selected drug transporters, transcription factors and cytochrome P450 genes encoding phase I drug-metabolizing enzymes. Ginekologia Polska. 2014;85(5):348–353.
    1. Davenport D. M., Wargovich M. J. Modulation of cytochrome P450 enzymes by organosulfur compounds from garlic. Food and Chemical Toxicology. 2005;43(12):1753–1762. doi: 10.1016/j.fct.2005.05.018.
    1. Lii C. K., Tsai C. W., Wu C. C. Garlic allyl sulfides display differential modulation of rat cytochrome P450 2B1 and the placental form glutathione S-transferase in various organs. Journal of Agricultural and Food Chemistry. 2006;54(14):5191–5196. doi: 10.1021/jf052484u.
    1. Kaefer C. M., Milner J. A. The role of herbs and spices in cancer prevention. Journal of Nutritional Biochemistry. 2008;19(6):347–361. doi: 10.1016/j.jnutbio.2007.11.003.
    1. Hsieh Y. W., Huang C. Y., Yang S. Y., et al. Oral intake of curcumin markedly activated CYP 3A4: in vivo and ex-vivo studies. Scientific Reports. 2014;4(article 6587) doi: 10.1038/srep06587.
    1. Murray M., Pizzorno J. Encyclopedia of Natural Medicine. 2nd. Rocklin, Calif, USA: Prima Publishing; 1998.
    1. Institute for Functional Medicine. Textbook of Functional Medicine. Boulder, Colo, USA: Johnston Printing; 2006.
    1. Ullrich V. Cytochrome P450 and biological hydroxylation reactions. Topics in Current Chemistry. 1979;83:67–104. doi: 10.1007/bfb0019663.
    1. Danielson P. B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Current Drug Metabolism. 2002;3(6):561–597. doi: 10.2174/1389200023337054.
    1. Paine A. J. Hepatic cytochrome P-450. Essays in Biochemistry. 1981;17:85–126.
    1. Chen Q., Zhang T., Wang J. F., Wei D. Q. Advances in human cytochrome P450 and personalized medicine. Current Drug Metabolism. 2011;12(5):436–444. doi: 10.2174/138920011795495259.
    1. Ma Q., Lu A. Y. H. CYP1A induction and human risk assessment: an evolving tale of in vitro and in vivo studies. Drug Metabolism and Disposition. 2007;35(7):1009–1016. doi: 10.1124/dmd.107.015826.
    1. James M. O., Sacco J. C., Faux L. R. Effects of food natural products on the biotransformation of PCBs. Environmental Toxicology and Pharmacology. 2008;25(2):211–217. doi: 10.1016/j.etap.2007.10.024.
    1. Vistisen K., Loft S., Olsen J. H., et al. Low CYP1A2 activity associated with testicular cancer. Carcinogenesis. 2004;25(6):923–929. doi: 10.1093/carcin/bgh102.
    1. Božina N., Bradamante V., Lovrić M. Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arhiv za Higijenu Rada i Toksikologiju. 2009;60(2):217–242. doi: 10.2478/10004-1254-60-2009-1885.
    1. Tsuchiya Y., Nakajima M., Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Letters. 2005;227(2):115–124. doi: 10.1016/j.canlet.2004.10.007.
    1. Michnovicz J. J., Bradlow H. L. Induction of estradiol metabolism by dietary indole-3-carbinol in humans. Journal of the National Cancer Institute. 1990;82(11):947–949. doi: 10.1093/jnci/82.11.947.
    1. Peterson S., Schwarz Y., Li S. S., et al. CYP1A2, GSTM1, and GSTT1 polymorphisms and diet effects on CYP1A2 activity in a crossover feeding trial. Cancer Epidemiology Biomarkers and Prevention. 2009;18(11):3118–3125. doi: 10.1158/1055-9965.epi-09-0589.
    1. Walters D. G., Young P. J., Agus C., et al. Cruciferous vegetable consumption alters the metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in humans. Carcinogenesis. 2004;25(9):1659–1669. doi: 10.1093/carcin/bgh164.
    1. Kall M. A., Vang O., Clausen J. Effects of dietary broccoli on human in vivo drug metabolizing enzymes: evaluation of caffeine, oestrone and chlorzoxazone metabolism. Carcinogenesis. 1996;17(4):793–799. doi: 10.1093/carcin/17.4.793.
    1. Horn T. L., Reichert M. A., Bliss R. L., Malejka-Giganti D. Modulations of P450 mRNA in liver and mammary gland and P450 activities and metabolism of estrogen in liver by treatment of rats with indole-3-carbinol. Biochemical Pharmacology. 2002;64(3):393–404. doi: 10.1016/S0006-2952(02)01190-5.
    1. Chow H. H. S., Garland L. L., Hsu C. H., et al. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prevention Research. 2010;3(9):1168–1175. doi: 10.1158/1940-6207.CAPR-09-0155.
    1. Chen Y., Xiao P., Ou-Yang D. S., et al. Simultaneous action of the flavonoid quercetin on cytochrome p450 (cyp) 1a2, cyp2a6, n-acetyltransferase and xanthine oxidase activity in healthy volunteers. Clinical and Experimental Pharmacology and Physiology. 2009;36(8):828–833. doi: 10.1111/j.1440-1681.2009.05158.x.
    1. Lord R. S., Bongiovanni B., Bralley J. A. Estrogen metabolism and the diet-cancer connection: rationale for assessing the ratio of urinary hydroxylated estrogen metabolites. Alternative Medicine Review. 2002;7(2):112–129.
    1. Takemura H., Sakakibara H., Yamazaki S., Shimoi K. Breast cancer and flavonoids—a role in prevention. Current Pharmaceutical Design. 2013;19(34):6125–6132. doi: 10.2174/1381612811319340006.
    1. Burns J., Yokota T., Ashihara H., Lean M. E. J., Crozier A. Plant foods and herbal sources of resveratrol. Journal of Agricultural and Food Chemistry. 2002;50(11):3337–3340. doi: 10.1021/jf0112973.
    1. Yao H. T., Hsu Y. R., Lii C. K., Lin A. H., Chang K. H., Yang H. T. Effect of commercially available green and black tea beverages on drug-metabolizing enzymes and oxidative stress in Wistar rats. Food and Chemical Toxicology. 2014;70:120–127. doi: 10.1016/j.fct.2014.04.043.
    1. Tayyem R. F., Heath D. D., Al-Delaimy W. K., Rock C. L. Curcumin content of turmeric and curry powders. Nutrition and Cancer. 2006;55(2):126–131. doi: 10.1207/s15327914nc5502_2.
    1. Bansal S. S., Kausar H., Vadhanam M. V., et al. Curcumin implants, not curcumin diet, inhibit estrogen-induced mammary carcinogenesis in ACI rats. Cancer Prevention Research. 2014;7(4):456–465. doi: 10.1158/1940-6207.CAPR-13-0248.
    1. Chen H. W., Tsai C. W., Yang J. J., Liu C. T., Kuo W. W., Lii C. K. The combined effects of garlic oil and fish oil on the hepatic antioxidant and drug-metabolizing enzymes of rats. British Journal of Nutrition. 2003;89(2):189–200. doi: 10.1079/bjn2002766.
    1. Debersac P., Heydel J. M., Amiot M. J., et al. Induction of cytochrome P450 and/or detoxication enzymes by various extracts of rosemary: Description of specific patterns. Food and Chemical Toxicology. 2001;39(9):907–918. doi: 10.1016/s0278-6915(01)00034-5.
    1. Ambati R. R., Moi P. S., Ravi S., Aswathanarayana R. G. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Marine Drugs. 2014;12(1):128–152. doi: 10.3390/md12010128.
    1. Gradelet S., Astorg P., Leclerc J., Chevalier J., Vernevaut M.-F., Siess M.-H. Effects of canthaxanthin, astaxanthin, lycopene and lutein on liver xenobiotic-metabolizing enzymes in the rat. Xenobiotica. 1996;26(1):49–63. doi: 10.3109/00498259609046688.
    1. Bu-Abbas A., Clifford M. N., Walker R., Ioannides C. Selective induction of rat hepatic CYP1 and CYP4 proteins and of peroxisomal proliferation by green tea. Carcinogenesis. 1994;15(11):2575–2579. doi: 10.1093/carcin/15.11.2575.
    1. Rasmussen M. K., Brunius C., Zamaratskaia G., Ekstrand B. Feeding dried chicory root to pigs decrease androstenone accumulation in fat by increasing hepatic 3β hydroxysteroid dehydrogenase expression. Journal of Steroid Biochemistry and Molecular Biology. 2012;130(1-2):90–95. doi: 10.1016/j.jsbmb.2012.01.003.
    1. Usta C., Ozdemir S., Schiariti M., Puddu P. E. The pharmacological use of ellagic acid-rich pomegranate fruit. International Journal of Food Sciences and Nutrition. 2013;64(7):907–913. doi: 10.3109/09637486.2013.798268.
    1. Celik G., Semiz A., Karakurt S., Arslan S., Adali O., Sen A. A comparative study for the evaluation of two doses of ellagic acid on hepatic drug metabolizing and antioxidant enzymes in the rat. BioMed Research International. 2013;2013:9. doi: 10.1155/2013/358945.358945
    1. Zhang T., Jiang S., He C., Kimura Y., Yamashita Y., Ashida H. Black soybean seed coat polyphenols prevent B(a)P-induced DNA damage through modulating drug-metabolizing enzymes in HepG2 cells and ICR mice. Mutation Research. 2013;752(1-2):34–41. doi: 10.1016/j.mrgentox.2013.01.002.
    1. Catterall F., McArdle N. J., Mitchell L., Papayanni A., Clifford M. N., Ioannides C. Hepatic and intestinal cytochrome P450 and conjugase activities in rats treated with black tea theafulvins and theaflavins. Food and Chemical Toxicology. 2003;41(8):1141–1147. doi: 10.1016/S0278-6915(03)00073-5.
    1. Thapliyal R., Maru G. B. Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food and Chemical Toxicology. 2001;39(6):541–547. doi: 10.1016/S0278-6915(00)00165-4.
    1. Sampson L., Rimm E., Hollman P. C. H., de Vries J. H. M., Katan M. B. Flavonol and flavone intakes in US health professionals. Journal of the American Dietetic Association. 2002;102(10):1414–1420. doi: 10.1016/s0002-8223(02)90314-7.
    1. Hertog M. G. L., Feskens E. J. M., Hollman P. C. H., et al. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. Journal of Agricultural and Food Chemistry. 1992;40(12):2379–2383. doi: 10.1021/jf00024a011.
    1. Peng W. X., Li H. D., Zhou H. H. Effect of daidzein on CYP1A2 activity and pharmacokinetics of theophylline in healthy volunteers. European Journal of Clinical Pharmacology. 2003;59(3):237–241. doi: 10.1007/s00228-003-0596-0.
    1. Fuhr U., Klittich K., Staib A. H. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. British Journal of Clinical Pharmacology. 1993;35(4):431–436. doi: 10.1111/j.1365-2125.1993.tb04162.x.
    1. Yamasaki I., Yamada M., Uotsu N., Teramoto S., Takayanagi R., Yamada Y. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats. Biomedical Research. 2012;33(4):235–242. doi: 10.2220/biomedres.33.235.
    1. Zeng T., Zhang C. L., Song F. Y., Han X. Y., Xie K. Q. The modulatory effects of garlic oil on hepatic cytochrome P450s in mice. Human and Experimental Toxicology. 2009;28(12):777–783. doi: 10.1177/0960327109353057.
    1. Maliakal P. P., Wanwimolruk S. Effect of herbal teas on hepatic drug metabolizing enzymes in rats. Journal of Pharmacy and Pharmacology. 2001;53(10):1323–1329. doi: 10.1211/0022357011777819.
    1. Nissar A. U., Farrukh M. R., Kaiser P. J., et al. Effect of N-acetyl cysteine (NAC), an organosulfur compound from Allium plants, on experimentally induced hepatic prefibrogenic events in wistar rat. Phytomedicine. 2013;20(10):828–833. doi: 10.1016/j.phymed.2013.03.009.
    1. Al-Jenoobi F. I., Al-Thukair A. A., Alam M. A., et al. Effect of garden cress seeds powder and its alcoholic extract on the metabolic activity of CYP2D6 and CYP3A4. Evidence-Based Complementary and Alternative Medicine. 2014;2014:6. doi: 10.1155/2014/634592.634592
    1. Park D., Jeon J. H., Shin S., et al. Green tea extract increases cyclophosphamide-induced teratogenesis by modulating the expression of cytochrome P-450 mRNA. Reproductive Toxicology. 2009;27(1):79–84. doi: 10.1016/j.reprotox.2008.11.058.
    1. Yoxall V., Kentish P., Coldham N., Kuhnert N., Sauer M. J., Ioannides C. Modulation of hepatic cytochromes P450 and phase II enzymes by dietary doses of sulforaphane in rats: implications for its chemopreventive activity. International Journal of Cancer. 2005;117(3):356–362. doi: 10.1002/ijc.21191.
    1. Li C., Lim S. C., Kim J., Choi J. S. Effects of myricetin, an anticancer compound, on the bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. European Journal of Drug Metabolism and Pharmacokinetics. 2011;36(3):175–182. doi: 10.1007/s13318-011-0036-y.
    1. Leclercq I., Desager J. P., Horsmans Y. Inhibition of chlorzoxazone metabolism, a clinical probe for CYP2E1, by a single ingestion of watercress. Clinical Pharmacology and Therapeutics. 1998;64(2):144–149. doi: 10.1016/s0009-9236(98)90147-3.
    1. Loizou G. D., Cocker J. The effects of alcohol and diallyl sulphide on CYP2E1 activity in humans: a phenotyping study using chlorzoxazone. Human and Experimental Toxicology. 2001;20(7):321–327. doi: 10.1191/096032701680350587.
    1. Park K. A., Kweon S., Choi H. Anticarcinogenic effect and modification of cytochrome P450 2E1 by dietary garlic powder in diethylnitrosamine-initiated rat hepatocarcinogenesis. Journal of Biochemistry and Molecular Biology. 2002;35(6):615–622. doi: 10.5483/BMBRep.2002.35.6.615.
    1. Park C. M., Cha Y. S., Youn H. J., Cho C. W., Song Y. S. Amelioration of oxidative stress by dandelion extract through CYP2E1 suppression against acute liver injury induced by carbon tetrachloride in sprague-dawley rats. Phytotherapy Research. 2010;24(9):1347–1353. doi: 10.1002/ptr.3121.
    1. Tahir M., Sultana S. Chrysin modulates ethanol metabolism in Wistar rats: a promising role against organ toxicities. Alcohol and Alcoholism. 2011;46(4):383–392. doi: 10.1093/alcalc/agr038.agr038
    1. Lieber C. S., Cao Q., Decarli L. M., et al. Role of medium-chain triglycerides in the alcohol-mediated cytochrome P450 2E1 induction of mitochondria. Alcoholism: Clinical and Experimental Research. 2007;31(10):1660–1668. doi: 10.1111/j.1530-0277.2007.00475.x.
    1. Sheweita S. A. Drug-metabolizing enzymes: mechanisms and functions. Current Drug Metabolism. 2000;1(2):107–132. doi: 10.2174/1389200003339117.
    1. Zgheib N. K., Mitri Z., Geryess E., Noutsi P. Cytochrome P4502E1 (CYP2E1) genetic polymorphisms in a Lebanese population: frequency distribution and association with morbid diseases. Genetic Testing and Molecular Biomarkers. 2010;14(3):393–397. doi: 10.1089/gtmb.2009.0193.
    1. González C. A., Sala N., Capellá G. Genetic susceptibility and gastric cancer risk. International Journal of Cancer. 2002;100(3):249–260. doi: 10.1002/ijc.10466.
    1. Armoni M., Harel C., Ramdas M., Karnieli E. CYP2E1 impairs GLUT4 gene expression and function: NRF2 as a possible mediator. Hormone and Metabolic Research. 2014;46(7):477–483. doi: 10.1055/s-0033-1363990.
    1. Matsuda K., Nishimura Y., Kurata N., Iwase M., Yasuhara H. Effects of continuous ingestion of herbal teas on intestinal CYP3A in the rat. Journal of Pharmacological Sciences. 2007;103(2):214–221. doi: 10.1254/jphs.FP0061311.
    1. Wu C. C., Sheen L. Y., Chen H. W., Kuo W. W., Tsai S. J., Lii C. K. Differential effects of garlic oil and its three major organosulfur components on the hepatic detoxification system in rats. Journal of Agricultural and Food Chemistry. 2002;50(2):378–383. doi: 10.1021/jf010937z.
    1. Misaka S., Kawabe K., Onoue S., et al. Green tea extract affects the cytochrome P450 3A activity and pharmacokinetics of simvastatin in rats. Drug Metabolism and Pharmacokinetics. 2013;28(6):514–518. doi: 10.2133/dmpk.dmpk-13-nt-006.
    1. Umathe S. N., Dixit P. V., Kumar V., Bansod K. U., Wanjari M. M. Quercetin pretreatment increases the bioavailability of pioglitazone in rats: involvement of CYP3A inhibition. Biochemical Pharmacology. 2008;75(8):1670–1676. doi: 10.1016/j.bcp.2008.01.010.
    1. Liu J., Tawa G. J., Wallqvist A. Identifying cytochrome P450 functional networks and their allosteric regulatory elements. PLoS ONE. 2013;8(12) doi: 10.1371/journal.pone.0081980.e81980
    1. Tanaka S., Uchida S., Miyakawa S., et al. Comparison of inhibitory duration of grapefruit juice on organic anion-transporting polypeptide and cytochrome P450 3A4. Biological and Pharmaceutical Bulletin. 2013;36(12):1936–1941. doi: 10.1248/bpb.b13-00538.
    1. Leibelt D. A., Hedstrom O. R., Fisher K. A., Pereira C. B., Williams D. E. Evaluation of chronic dietary exposure to indole-3-carbinol and absorption-enhanced 3,3′-diidolylmethane in Sprague-Dawley rats. Toxicological Sciences. 2003;74(1):10–21. doi: 10.1093/toxsci/kfg103.
    1. Linus Pauling Institute. Garlic and Organosulfur Compounds. Corvallis, Ore, USA: Micronutrient Information Center; 2008.
    1. Ioannides C. Effect of diet and nutrition on the expression of cytochromes P450. Xenobiotica. 1999;29(2):109–154. doi: 10.1080/004982599238704.
    1. Baer B., Rettie A. CYP4B1: an enigmatic P450 at the interface between xenobiotic and endobiotic metabolism. Drug Metabolism Reviews. 2006;38(3):451–476. doi: 10.1080/03602530600688503.
    1. Ye Z., Liu Z., Henderson A., et al. Increased CYP4B1 mRNA is associated with the inhibition of dextran sulfate sodium-induced colitis by caffeic acid in mice. Experimental Biology and Medicine (Maywood) 2009;234(6):606–616. doi: 10.3181/0901-rm-1.
    1. Lafay S., Morand C., Manach C., Besson C., Scalbert A. Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. British Journal of Nutrition. 2006;96(1):39–46. doi: 10.1079/BJN20061714.
    1. Xu C., Li C. Y., Kong A. T. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Archives of Pharmacal Research. 2005;28(3):249–268. doi: 10.1007/bf02977789.
    1. Ginsberg G., Guyton K., Johns D., Schimek J., Angle K., Sonawane B. Genetic polymorphism in metabolism and host defense enzymes: implications for human health risk assessment. Critical Reviews in Toxicology. 2010;40(7):575–619. doi: 10.3109/10408441003742895.
    1. Jancova P., Anzenbacher P., Anzenbacherova E. Phase II drug metabolizing enzymes. Biomedical Papers. 2010;154(2):103–116. doi: 10.5507/bp.2010.017.
    1. Jenkinson C., Petroczi A., Naughton D. P. Effects of dietary components on testosterone metabolism via UDP-glucuronosyltransferase. Frontiers in Endocrinology. 2013;4, article 80 doi: 10.3389/fendo.2013.00080.
    1. Chang J. L., Bigler J., Schwarz Y., et al. UGT1A1 polymorphism is associated with serum bilirubin concentrations in a randomized, controlled, fruit and vegetable feeding trial. Journal of Nutrition. 2007;137(4):890–897.
    1. Rowland A., Miners J. O., Mackenzie P. I. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. International Journal of Biochemistry and Cell Biology. 2013;45(6):1121–1132. doi: 10.1016/j.biocel.2013.02.019.
    1. Strassburg C. P., Kneip S., Topp J., et al. Polymorphic gene regulation and interindividual variation of UDP-glucuronosyltransferase activity in human small intestine. The Journal of Biological Chemistry. 2000;275(46):36164–36171. doi: 10.1074/jbc.m002180200.
    1. Wells P. G., Mackenzie P. I., Chowdhury J. R., et al. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metabolism and Disposition. 2004;32(3):281–290. doi: 10.1124/dmd.32.3.281.
    1. Lampe J. W. Interindividual differences in response to plant-based diets: Implications for cancer risk. The American Journal of Clinical Nutrition. 2009;89(5):1553S–1557S. doi: 10.3945/ajcn.2009.26736d.
    1. Navarro S. L., Peterson S., Chen C., et al. Cruciferous vegetable feeding alters UGT1A1 activity: diet- and genotype-dependent changes in serum bilirubin in a controlled feeding trial. Cancer Prevention Research (Phila) 2009;2(4):345–352. doi: 10.1158/1940-6207.capr-08-0178.
    1. Hecht S. S., Carmella S. G., Murphy S. E. Effects of watercress consumption on urinary metabolites of nicotine in smokers. Cancer Epidemiology Biomarkers and Prevention. 1999;8(10):907–913.
    1. Saracino M. R., Bigler J., Schwarz Y., et al. Citrus fruit intake is associated with lower serum bilirubin concentration among women with the UGT1A1*28 polymorphism. Journal of Nutrition. 2009;139(3):555–560. doi: 10.3945/jn.108.097279.
    1. Marnewick J. L., Joubert E., Swart P., van der Westhuizen F., Gelderblom W. C. Modulation of hepatic drug metabolizing enzymes and oxidative status by rooibos (Aspalathus linearis) and Honeybush (Cyclopia intermedia), green and black (Camellia sinensis) teas in rats. Journal of Agricultural and Food Chemistry. 2003;51(27):8113–8119. doi: 10.1021/jf0344643.
    1. Marahatta A., Bhandary B., Jeong S.-K., Kim H.-R., Chae H.-J. Soybean greatly reduces valproic acid plasma concentrations: a food-drug interaction study. Scientific Reports. 2014;4, article 4362 doi: 10.1038/srep04362.
    1. van der Logt E. M. J., Roelofs H. M. J., Nagengast F. M., Peters W. H. M. Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis. 2003;24(10):1651–1656. doi: 10.1093/carcin/bgg117.
    1. Graf E. Antioxidant potential of ferulic acid. Free Radical Biology and Medicine. 1992;13(4):435–448. doi: 10.1016/0891-5849(92)90184-I.
    1. Simone C. B., II, Simone N. L., Pallante M., Simone C. B. Cancer, lifestyle modification and glucarate. Journal of Orthomolecular Medicine. 2001;16(2):83–90.
    1. Zółtaszek R., Hanausek M., Kiliańska Z. M., Walaszek Z. The biological role of D-glucaric acid and its derivatives: potential use in medicine. Postpy Higieny i Medycyny Doświadczalnej. 2008;62:451–462.
    1. Dwivedi C., Heck W. J., Downie A. A., Larroya S., Webb T. E. Effect of calcium glucarate on beta-glucoronidase activity and glucarate content of certain vegetable and fruits. Biochemical Medicine and Metabolic Biology. 1990;43(2):83–92. doi: 10.1016/0885-4505(90)90012-p.
    1. Kosmala M., Zduńczyk Z., Kołodziejczyk K., Klimczak E., Jukiewicz J., Zduńczyk P. Chemical composition of polyphenols extracted from strawberry pomace and their effect on physiological properties of diets supplemented with different types of dietary fibre in rats. European Journal of Nutrition. 2014;53(2):521–532. doi: 10.1007/s00394-013-0557-z.
    1. Maruti S. S., Chang J. L., Prunty J. A., et al. Serum β-glucuronidase activity in response to fruit and vegetable supplementation: a controlled feeding study. Cancer Epidemiology Biomarkers and Prevention. 2008;17(7):1808–1812. doi: 10.1158/1055-9965.epi-07-2660.
    1. Jurgoński A., Juśkiewicz J., Zduńczyk Z., Matusevicius P., Kołodziejczyk K. Polyphenol-rich extract from blackcurrant pomace attenuates the intestinal tract and serum lipid changes induced by a high-fat diet in rabbits. European Journal of Nutrition. 2014;53(8):1603–1613. doi: 10.1007/s00394-014-0665-4.
    1. James M. O., Ambadapadi S. Interactions of cytosolic sulfotransferases with xenobiotics. Drug Metabolism Reviews. 2013;45(4):401–414. doi: 10.3109/03602532.2013.835613.
    1. Kodama S., Negishi M. Sulfotransferase genes: regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metabolism Reviews. 2013;45(4):441–449. doi: 10.3109/03602532.2013.835630.
    1. Wang L.-Q., James M. O. Inhibition of sulfotransferases by xenobiotics. Current Drug Metabolism. 2006;7(1):83–104. doi: 10.2174/138920006774832596.
    1. Ung D., Nagar S. Variable sulfation of dietary polyphenols by recombinant human sulfotransferase (SULT) 1A1 genetic variants and SULT1E1. Drug Metabolism and Disposition. 2007;35(5):740–746. doi: 10.1124/dmd.106.013987.
    1. Zhou T., Chen Y., Huang C., Chen G. Caffeine induction of sulfotransferases in rat liver and intestine. Journal of Applied Toxicology. 2012;32(10):804–809. doi: 10.1002/jat.1698.
    1. Maiti S., Chen X., Chen G. All-trans retinoic acid induction of sulfotransferases. Basic and Clinical Pharmacology and Toxicology. 2005;96(1):44–53. doi: 10.1111/j.1742-7843.2005.pto960107.x.
    1. Kamio K., Honke K., Makita A. Pyridoxal 5'-phosphate binds to a lysine residue in the adenosine 3′-phosphate 5′-phosphosulfate recognition site of glycolipid sulfotransferase from human renal cancer cells. Glycoconjugate Journal. 1995;12(6):762–766. doi: 10.1007/bf00731236.
    1. Masters M., McCance R. A. The sulfur content of foods. Biochemical Journal. 1939;33(8):1304–1312.
    1. USDA National Nutrient Database for Standard Reference. Nutrient Data Laboratory. Release 27. Washington, DC, USA: Agriculture Research Service; 2011.
    1. McFadden S. A. Phenotypic variation in xenobiotic metabolism and adverse environmental response: focus on sulfur-dependent detoxification pathways. Toxicology. 1996;111(1–3):43–65. doi: 10.1016/0300-483x(96)03392-6.
    1. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews in Biochemistry and Molecular Biology. 1995;30(6):445–600. doi: 10.3109/10409239509083491.
    1. Navarro S. L., Chang J. L., Peterson S., et al. Modulation of human serum glutathione S-transferase A1/2 concentration by cruciferous vegetables in a controlled feeding study is influenced by GSTM1 and GSTT1 genotypes. Cancer Epidemiology Biomarkers and Prevention. 2009;18(11):2974–2978. doi: 10.1158/1055-9965.epi-09-0701.
    1. Wark P. A., Grubben M. J. A. L., Peters W. H. M., et al. Habitual consumption of fruits and vegetables: associations with human rectal glutathione S-transferase. Carcinogenesis. 2004;25(11):2135–2142. doi: 10.1093/carcin/bgh238.
    1. Lampe J. W., Chen C., Li S., et al. Modulation of human glutathione S-transferases by botanically defined vegetable diets. Cancer Epidemiology Biomarkers and Prevention. 2000;9(8):787–793.
    1. Nijhoff W. A., Mulder T. P. J., Verhagen H., van Poppel G., Peters W. H. M. Effects of consumption of brussels sprouts on plasma and urinary glutathione S-transferase class-alpha and -pi in humans. Carcinogenesis. 1995;16(4):955–957. doi: 10.1093/carcin/16.4.955.
    1. Hwang Y. P., Choi J. H., Yun H. J., et al. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food and Chemical Toxicology. 2011;49(1):93–99. doi: 10.1016/j.fct.2010.10.002.
    1. Iqbal M., Sharma S. D., Okazaki Y., Fujisawa M., Okada S. Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity. Pharmacology and Toxicology. 2003;92(1):33–38. doi: 10.1034/j.1600-0773.2003.920106.x.
    1. Newsome B. J., Petriello M. C., Han S. G., et al. Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes. Journal of Nutritional Biochemistry. 2014;25(2):126–135. doi: 10.1016/j.jnutbio.2013.10.003.
    1. Lin C. Y., Chen J. H., Fu R. H., Tsai C. W. Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity. Chemical Research in Toxicology. 2014;27(11):1958–1966. doi: 10.1021/tx5003063.
    1. Chinnadurai K., Kanwal H. K., Tyagi A. K., Stanton C., Ross P. High conjugated linoleic acid enriched ghee (clarified butter) increases the antioxidant and antiatherogenic potency in female Wistar rats. Lipids in Health and Disease. 2013;12(1, article 121) doi: 10.1186/1476-511x-12-121.
    1. Froyen E. B., Reeves J. L. R., Mitchell A. E., Steinberg F. M. Regulation of phase II enzymes by Genistein and daidzein in male and female Swiss Webster mice. Journal of Medicinal Food. 2009;12(6):1227–1237. doi: 10.1089/jmf.2009.0084.
    1. Perez J. L., Jayaprakasha G. K., Cadena A., Martinez E., Ahmad H., Patil B. S. In vivo induction of phase II detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids. BMC Complementary and Alternative Medicine. 2010;10, article 51 doi: 10.1186/1472-6882-10-51.
    1. Barrett J. R. The science of soy: what do we really know? Environmental Health Perspectives. 2006;114(6):A352–A358. doi: 10.1289/ehp.114-a352.
    1. Wiegand H., Boesch-Saadatmandi C., Regos I., Treutter D., Wolffram S., Rimbach G. Effects of quercetin and catechin on hepatic glutathione-s transferase (GST), NAD(P)H quinone oxidoreductase 1 (NQO1), and antioxidant enzyme activity levels in rats. Nutrition and Cancer. 2009;61(5):717–722. doi: 10.1080/01635580902825621.
    1. Gomes M. B., Negrato C. A. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetology & Metabolic Syndrome. 2014;6(1, article 80) doi: 10.1186/1758-5996-6-80.
    1. Linus Pauling Institute. Lipoic Acid. Corvalis, Ore, USA: Micronutrient Information Center; 2012.
    1. Kalpravidh R. W., Siritanaratkul N., Insain P., et al. Improvement in oxidative stress and antioxidant parameters in beta-thalassemia/Hb E patients treated with curcuminoids. Clinical Biochemistry. 2010;43(4-5):424–429. doi: 10.1016/j.clinbiochem.2009.10.057.
    1. Lucena M. I., Andrade R. J., de la Cruz J. P., Rodriguez-Mendizabal M., Blanco E., Sánchez de la Cuesta F. Effects of silymarin MZ-80 on oxidative stress in patients with alcoholic cirrhosis. International Journal of Clinical Pharmacology and Therapeutics. 2002;40(1):2–8. doi: 10.5414/CPP40002.
    1. Santana-Martínez R. A., Galván-Arzáte S., Hernández-Pando R., et al. Sulforaphane reduces the alterations induced by quinolinic acid: modulation of glutathione levels. Neuroscience. 2014;272:188–198. doi: 10.1016/j.neuroscience.2014.04.043.
    1. Chen M. F., Chen L. T., Boyce H. W., Jr. Cruciferous vegetables and glutathione: their effects on colon mucosal glutathione level and colon tumor development in rats induced by DMH. Nutrition and Cancer. 1995;23(1):77–83. doi: 10.1080/01635589509514363.
    1. El Morsy E. M., Kamel R. Protective effect of artichoke leaf extract against paracetamol-induced hepatotoxicity in rats. Pharmaceutical Biology. 2015;53(2):167–173. doi: 10.3109/13880209.2014.913066.
    1. Brauer H. A., Libby T. E., Mitchell B. L., et al. Cruciferous vegetable supplementation in a controlled diet study alters the serum peptidome in a GSTM1-genotype dependent manner. Nutrition Journal. 2011;10(1, article 11) doi: 10.1186/1475-2891-10-11.
    1. Hofmann T., Kuhnert A., Schubert A., et al. Modulation of detoxification enzymes by watercress: in vitro and in vivo investigations in human peripheral blood cells. European Journal of Nutrition. 2009;48(8):483–491. doi: 10.1007/s00394-009-0039-5.
    1. Forman H. J., Zhang H., Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine. 2009;30(1-2):1–12. doi: 10.1016/j.mam.2008.08.006.
    1. Kern J. K., Geier D. A., Adams J. B., Garver C. R., Audhya T., Geier M. R. A clinical trial of glutathione supplementation in autism spectrum disorders. Medical Science Monitor. 2011;17(12):CR677–CR682.
    1. Paterson P. G., Lyon A. W., Kamencic H., Andersen L. B., Juurlink B. H. J. Sulfur amino acid deficiency depresses brain glutathione concentration. Nutritional Neuroscience. 2001;4(3):213–222.
    1. Treweeke A. T., Winterburn T. J., Mackenzie I., et al. N-Acetylcysteine inhibits platelet-monocyte conjugation in patients with type 2 diabetes with depleted intraplatelet glutathione: a randomised controlled trial. Diabetologia. 2012;55(11):2920–2928. doi: 10.1007/s00125-012-2685-z.
    1. Galluzzi L., Vitale I., Senovilla L., et al. Prognostic impact of vitamin B6 metabolism in lung cancer. Cell Reports. 2012;2(2):257–269. doi: 10.1016/j.celrep.2012.06.017.
    1. Howard J. M., Davies S., Hunnisett A. Red cell magnesium and glutathione peroxidase in infertile women—effects of oral supplementation with magnesium and selenium. Magnesium Research. 1994;7(1):49–57.
    1. Child D. F., Hudson P. R., Jones H., et al. The effect of oral folic acid on glutathione, glycaemia and lipids in type 2 diabetes. Diabetes, Nutrition and Metabolism—Clinical and Experimental. 2004;17(2):95–102.
    1. Ansar H., Mazloom Z., Kazemi F., Hejazi N. Effect of alpha-lipoic acid on blood glucose, insulin resistance, and glutathione peroxidase of type 2 diabetic patients. Saudi Medical Journal. 2011;32(6):584–588.
    1. Lord R. S., Bralley J. A., editors. Laboratory Evaluations for Integrative and Functional Medicine. 2nd. Duluth, Ga, USA: Genova Diagnostics; 2012.
    1. University of Maryland Medical Center. Glutamine, University of Maryland Medical Center, Baltimore, Md, USA, 2014, .
    1. Makarova S. I. Human N-acetyltransferases and drug-induced hepatotoxicity. Current Drug Metabolism. 2008;9(6):538–545. doi: 10.2174/138920008784892047.
    1. Kohalmy K., Vrzal R. Regulation of phase II biotransformation enzymes by steroid hormones. Current Drug Metabolism. 2011;12(2):104–123. doi: 10.2174/138920011795016872.
    1. Yager J. D. Mechanisms of estrogen carcinogenesis: the role of E2/E1-quinone metabolites suggests new approaches to preventive intervention—a review. Steroids. 2014 doi: 10.1016/j.steroids.2014.08.006.
    1. Busserolles J., Zimowska W., Rock E., Rayssiguier Y., Mazur A. Rats fed a high sucrose diet have altered heart antioxidant enzyme activity and gene expression. Life Sciences. 2002;71(11):1303–1312. doi: 10.1016/S0024-3205(02)01846-5.
    1. Su Z. Y., Shu L., Khor T. O., Lee J. H., Fuentes F., Kong A. N. T. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, Nrf2, and epigenomics. Topics in Current Chemistry. 2013;329:133–162. doi: 10.1007/128-2012-340.
    1. Chan K., Han X. D., Kan Y. W. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(8):4611–4616. doi: 10.1073/pnas.081082098.
    1. Calabrese V., Cornelius C., Mancuso C., et al. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochemical Research. 2008;33(12):2444–2471. doi: 10.1007/s11064-008-9775-9.
    1. Boyanapalli S. S., Paredes-Gonzalez X., Fuentes F., et al. Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin. Chemical Research in Toxicology. 2014;27(12):2036–2043. doi: 10.1021/tx500234h.
    1. Niture S. K., Khatri R., Jaiswal A. K. Regulation of Nrf2—an update. Free Radical Biology and Medicine. 2014;66:36–44. doi: 10.1016/j.freeradbiomed.2013.02.008.
    1. Xie Y., Zhao Q. Y., Li H. Y., Zhou X., Liu Y., Zhang H. Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacology Biochemistry and Behavior. 2014 doi: 10.1016/j.pbb.2014.08.005.
    1. Soetikno V., Sari F. R., Lakshmanan A. P., et al. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Molecular Nutrition & Food Research. 2013;57(9):1649–1659. doi: 10.1002/mnfr.201200540.
    1. He H. J., Wang G. Y., Gao Y., Ling W. H., Yu Z. W., Jin T. R. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World Journal of Diabetes. 2012;3(5):94–104. doi: 10.4239/wjd.v3.i5.94.
    1. Farombi E. O., Shrotriya S., Na H. K., Kim S. H., Surh Y. J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food and Chemical Toxicology. 2008;46(4):1279–1287. doi: 10.1016/j.fct.2007.09.095.
    1. Zhang Z., Wang S., Zhou S., et al. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. Journal of Molecular and Cellular Cardiology. 2014;77:42–52. doi: 10.1016/j.yjmcc.2014.09.022.
    1. McWalter G. K., Higgins L. G., McLellan L. I., et al. Transcription factor Nrf2 is essential for induction of NAD(P)H:quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates. Journal of Nutrition. 2004;134(12, supplement):3499S–3506S.
    1. Lee I. C., Kim S. H., Baek H. S., et al. The involvement of Nrf2 in the protective effects of diallyl disulfide on carbon tetrachloride-induced hepatic oxidative damage and inflammatory response in rats. Food and Chemical Toxicology. 2014;63:174–185. doi: 10.1016/j.fct.2013.11.006.
    1. Padiya R., Chowdhury D., Borkar R., Srinivas R., Pal Bhadra M., Banerjee S. K. Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS ONE. 2014;9(5) doi: 10.1371/journal.pone.0094228.e94228
    1. Gómez-Sierra T., Molina-Jijón E., Tapia E., et al. S-allylcysteine prevents cisplatin-induced nephrotoxicity and oxidative stress. Journal of Pharmacy and Pharmacology. 2014;66(9):1271–1281. doi: 10.1111/jphp.12263.
    1. Chang C. F., Cho S., Wang J. (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Annals of Clinical and Translational Neurology. 2014;1(4):258–271. doi: 10.1002/acn3.54.
    1. Leonardo C. C., Agrawal M., Singh N., Moore J. R., Biswal S., Doré S. Oral administration of the flavanol (-)-epicatechin bolsters endogenous protection against focal ischemia through the Nrf2 cytoprotective pathway. European Journal of Neuroscience. 2013;38(11):3659–3668. doi: 10.1111/ejn.12362.
    1. Kavitha K., Thiyagarajan P., Rathna J., Mishra R., Nagini S. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie. 2013;95(8):1629–1639. doi: 10.1016/j.biochi.2013.05.004.
    1. Shah Z. A., Li R.-C., Ahmad A. S., et al. The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. Journal of Cerebral Blood Flow and Metabolism. 2010;30(12):1951–1961. doi: 10.1038/jcbfm.2010.53.
    1. Tamaki N., Cristina Orihuela-Campos R., Inagaki Y., Fukui M., Nagata T., Ito H. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radical Biology and Medicine. 2014;75:222–229. doi: 10.1016/j.freeradbiomed.2014.07.034.
    1. Sadi G., Bozan D., Yildiz H. B. Redox regulation of antioxidant enzymes: post-translational modulation of catalase and glutathione peroxidase activity by resveratrol in diabetic rat liver. Molecular and Cellular Biochemistry. 2014;393(1-2):111–122. doi: 10.1007/s11010-014-2051-1.
    1. Chen H., Fu J., Hu Y., et al. Ginger compound [6]-shogaol and its cysteine-conjugated metabolite (M2) activate Nrf2 in colon epithelial cells in vitro and in vivo . Chemical Research in Toxicology. 2014;27(9):1575–1585. doi: 10.1021/tx500211x.
    1. Bak M. J., Ok S., Jun M., Jeong W. S. 6-shogaol-rich extract from ginger up-regulates the antioxidant defense systems in cells and mice. Molecules. 2012;17(7):8037–8055. doi: 10.3390/molecules17078037.
    1. Xi Y. D., Li X. Y., Yu H. L., et al. Soy isoflavone antagonizes the oxidative cerebrovascular injury induced by β-Amyloid Peptides 1–42 in Rats. Neurochemical Research. 2014;39(7):1374–1381. doi: 10.1007/s11064-014-1319-x.
    1. Li R., Liang T., Xu L., Zheng N., Zhang K., Duan X. Puerarin attenuates neuronal degeneration in the substantia nigra of 6-OHDA-lesioned rats through regulating BDNF expression and activating the Nrf2/ARE signaling pathway. Brain Research. 2013;1523:1–9. doi: 10.1016/j.brainres.2013.05.046.
    1. Vicente S. J. V., Ishimoto E. Y., Torres E. A. F. S. Coffee modulates transcription factor Nrf2 and highly increases the activity of antioxidant enzymes in rats. Journal of Agricultural and Food Chemistry. 2014;62(1):116–122. doi: 10.1021/jf401777m.
    1. Sahu B. D., Putcha U. K., Kuncha M., Rachamalla S. S., Sistla R. Carnosic acid promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress and apoptosis in mice. Molecular and Cellular Biochemistry. 2014;394(1-2):163–176. doi: 10.1007/s11010-014-2092-5.
    1. Balstad T. R., Carlsen H., Myhrstad M. C. W., et al. Coffee, broccoli and spices are strong inducers of electrophile response element-dependent transcription in vitro and in vivo—studies in electrophile response element transgenic mice. Molecular Nutrition and Food Research. 2011;55(2):185–197. doi: 10.1002/mnfr.201000204.
    1. Wang Y. P., Cheng M. L., Zhang B. F., et al. Effect of blueberry on hepatic and immunological functions in mice. Hepatobiliary and Pancreatic Diseases International. 2010;9(2):164–168.
    1. Bishayee A., Bhatia D., Thoppil R. J., Darvesh A. S., Nevo E., Lansky E. P. Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms. Carcinogenesis. 2011;32(6):888–896. doi: 10.1093/carcin/bgr045.
    1. Esmaeili M. A., Alilou M. Naringenin attenuates CCl4-induced hepatic inflammation by the activation of an Nrf2-mediated pathway in rats. Clinical and Experimental Pharmacology and Physiology. 2014;41(6):416–422. doi: 10.1111/1440-1681.12230.
    1. Singh C. K., Ndiaye M. A., Siddiqui I. A., et al. Methaneseleninic acid and γ-tocopherol combination inhibits prostate tumor growth in vivo in a xenograft mouse model. Oncotarget. 2014;5(11):3651–3661.
    1. Magbanua M. J. M., Roy R., Sosa E. V., et al. Gene expression and biological pathways in tissue of men with prostate cancer in a randomized clinical trial of lycopene and fish oil supplementation. PLoS ONE. 2011;6(9) doi: 10.1371/journal.pone.0024004.e24004
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition. 2004;79(5):727–747.
    1. Delmonte P., Rader J. I. Analysis of isoflavones in foods and dietary supplements. Journal of AOAC International. 2006;89(4):1138–1146.
    1. Chian S., Thapa R., Chi Z., Wang X. J., Tang X. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochemical and Biophysical Research Communications. 2014;447(4):602–608. doi: 10.1016/j.bbrc.2014.04.039.
    1. Marina R., González P., Ferreras M. C., Costilla S., Barrio J. P. Hepatic Nrf2 expression is altered by quercetin supplementation in Xirradiated rats. Molecular Medicine Reports. 2015;11(1):539–546.
    1. Zhou H., Qu Z., Mossine V. V., et al. Proteomic analysis of the effects of aged garlic extract and its fruarg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells. PLoS ONE. 2014;9(11) doi: 10.1371/journal.pone.0113531.e113531
    1. Calabrese V., Cornelius C., Dinkova-Kostova A. T., Calabrese E. J., Mattson M. P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants & Redox Signaling. 2010;13(11):1763–1811. doi: 10.1089/ars.2009.3074.
    1. Houghton C. A., Fassett R. G., Coombes J. S. Sulforaphane: translational research from laboratory bench to clinic. Nutrition Reviews. 2013;71(11):709–726. doi: 10.1111/nure.12060.
    1. Stefanson A. L., Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients. 2014;6(9):3777–3801. doi: 10.3390/nu6093777.
    1. Andrews G. K. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochemical Pharmacology. 2000;59(1):95–104. doi: 10.1016/S0006-2952(99)00301-9.
    1. Lichtlen P., Schaffner W. Putting its fingers on stressful situations: the heavy metal-regulatory transcription factor MTF-1. BioEssays. 2001;23(11):1010–1017. doi: 10.1002/bies.1146.
    1. Sato M., Kondoh M. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku Journal of Experimental Medicine. 2002;196(1):9–22. doi: 10.1620/tjem.196.9.
    1. Pan Y., Huang J., Xing R., et al. Metallothionein 2A inhibits NF-κB pathway activation and predicts clinical outcome segregated with TNM stage in gastric cancer patients following radical resection. Journal of Translational Medicine. 2013;11(1, article 173) doi: 10.1186/1479-5876-11-173.
    1. Lamb J. J., Konda V. R., Quig D. W., et al. A program consisting of a phytonutrient-rich medical food and an elimination diet ameliorated fibromyalgia symptoms and promoted toxic-element detoxification in a pilot trial. Alternative Therapies in Health and Medicine. 2011;17(2):36–44.
    1. Aydemir T. B., Blanchard R. K., Cousins R. J. Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(6):1699–1704. doi: 10.1073/pnas.0510407103.
    1. Mulder T. P. J., van der Sluys Veer A., Verspaget H. W., et al. Effect of oral zinc supplementation on metallothionein and superoxide dismutase concentrations in patients with inflammatory bowel disease. Journal of Gastroenterology and Hepatology. 1994;9(5):472–477. doi: 10.1111/j.1440-1746.1994.tb01277.x.
    1. Hu R., Hebbar V., Kim B. R., et al. In vivo pharmacokinetics and regulation of gene expression profiles by isothiocyanate sulforaphane in the rat. Journal of Pharmacology and Experimental Therapeutics. 2004;310(1):263–271. doi: 10.1124/jpet.103.064261.
    1. Kimura T., Okumura F., Onodera A., Nakanishi T., Itoh N., Isobe M. Chromium (VI) inhibits mouse metallothionein-I gene transcription by modifying the transcription potential of the co-activator p300. The Journal of Toxicological Sciences. 2011;36(2):173–180. doi: 10.2131/jts.36.173.
    1. Weng C. J., Chen M. J., Yeh C. T., Yen G. C. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. New Biotechnology. 2011;28(6):767–777. doi: 10.1016/j.nbt.2011.05.003.
    1. Singh M., Tulsawani R., Koganti P., Chauhan A., Manickam M., Misra K. Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells. BioMed Research International. 2013;2013:13. doi: 10.1155/2013/569206.569206
    1. Sales N. M. R., Pelegrini P. B., Goersch M. C. Nutrigenomics: definitions and advances of this new science. Journal of Nutrition and Metabolism. 2014;2014:6. doi: 10.1155/2014/202759.202759
    1. Lim U., Song M. A. Dietary and lifestyle factors of DNA methylation. Methods in Molecular Biology. 2012;863:359–376. doi: 10.1007/978-1-61779-612-8_23.
    1. Lang I. A., Galloway T. S., Scarlett A., et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. The Journal of the American Medical Association. 2008;300(11):1303–1310. doi: 10.1001/jama.300.11.1303.
    1. Rezg R., El-Fazaa S., Gharbi N., Mornagui B. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environment International. 2014;64:83–90. doi: 10.1016/j.envint.2013.12.007.
    1. Mostafalou S., Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology. 2013;268(2):157–177. doi: 10.1016/j.taap.2013.01.025.
    1. Magliano D. J., Loh V. H. Y., Harding J. L., Botton J., Shaw J. E. Persistent organic pollutants and diabetes: a review of the epidemiological evidence. Diabetes & Metabolism. 2014;40(1):1–14. doi: 10.1016/j.diabet.2013.09.006.
    1. Agarwal S., Zaman T., Tuzcu E. M., Kapadia S. R. Heavy metals and cardiovascular disease: results from the National Health and Nutrition Examination Survey (NHANES) 1999–2006. Angiology. 2011;62(5):422–429. doi: 10.1177/0003319710395562.
    1. Rissman E. F., Adli M. Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology. 2014;155(8):2770–2780. doi: 10.1210/en.2014-1123.
    1. Walker D. M., Gore A. C. Transgenerational neuroendocrine disruption of reproduction. Nature Reviews Endocrinology. 2011;7(4):197–207. doi: 10.1038/nrendo.2010.215.

Source: PubMed

3
S'abonner