Physical Activity Practice and Optimal Development of Postural Control in School Children: Are They Related?

Jose L García-Soidán, Jesús García-Liñeira, Raquel Leirós-Rodríguez, Anxela Soto-Rodríguez, Jose L García-Soidán, Jesús García-Liñeira, Raquel Leirós-Rodríguez, Anxela Soto-Rodríguez

Abstract

Background: This study aims to analyze the effect of physical activity practice on the postural control state of school children. If such an effect was detected, the second aim of the study was to identify which specific capacities of postural control benefited the most from physical activity.

Methods: A cross-sectional study was performed using a convenience sample of 118 healthy children (54 girls) with a mean age of 10.3 ± 1.2 years. Their weight and height were measured. The accelerometric assessment of balance included four different tests in static balance and walking.

Results: Physical activity habit prevalence was 38.9% in girls and 60.9% in boys, and its frequency was 2.3 days per week in girls and 2.8 days in boys. The active children obtained lower accelerations, but the active and sedentary girls showed lower accelerometric values than the active boys. The logistic regression analysis demonstrated the influence of sex on the accelerations of the body (p < 0.001), regardless of the habit of physical activity.

Conclusions: Active children have better postural control than sedentary children, although sedentary girls have better balance than active boys. Therefore, physical activity practice seems to favor a more efficient development of postural control, but it cannot level or reverse the effect of the neurophysiological factors that are conditioned by sex.

Keywords: child development; exercise; postural balance; sex characteristics.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Peñeñory V.M., Manresa-Yee C., Riquelme I., Collazos C.A., Fardoun H.M. Scoping review of systems to train psychomotor skills in hearing impaired children. Sensors. 2018;18:2546. doi: 10.3390/s18082546.
    1. Tanaka C., Hikihara Y., Ohkawara K., Tanaka S. Locomotive and non-locomotive activity as determined by triaxial accelerometry and physical fitness in Japanese preschool children. Pediatr. Exerc. Sci. 2012;24:420–434. doi: 10.1123/pes.24.3.420.
    1. Wälchli M., Ruffieux J., Mouthon A., Keller M., Taube W. Is young age a limiting factor when training balance? Effects of child-oriented balance training in children and adolescents. Pediatr. Exerc. Sci. 2018;30:176–184. doi: 10.1123/pes.2017-0061.
    1. Ledebt A., Bril B., Brenière Y. The build-up of anticipatory behaviour an analysis of the development of gait initiation in children. Exp. Brain Res. 1998;120:9–17. doi: 10.1007/s002210050372.
    1. Malouin F., Richards C.L. Preparatory adjustments during gait initiation in 4 to 6-year-old children. Gait Posture. 2000;11:239–253. doi: 10.1016/S0966-6362(00)00051-5.
    1. Schmitz C., Martin N., Assaiante C. Building anticipatory postural adjustment during childhood: A kinematic and electromyographic analysis of unloading in children from 4 to 8 years of age. Exp. Brain Res. 2002;142:354–364. doi: 10.1007/s00221-001-0910-y.
    1. Alexander G.M., Wilcox T. Sex differences in early infancy. Child Dev. Perspect. 2012;6:400–406. doi: 10.1111/j.1750-8606.2012.00247.x.
    1. Lenroot R.K., Giedd J.N. Sex differences in the adolescent brain. Brain Cogn. 2010;72:46–55. doi: 10.1016/j.bandc.2009.10.008.
    1. Lenroot R.K., Giedd J.N. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 2006;30:718–729. doi: 10.1016/j.neubiorev.2006.06.001.
    1. Livesey D., Coleman R., Piek J. Performance on the movement assessment battery for children by Australian 3-to 5-year-old children. Child Care Health Dev. 2007;33:713–719. doi: 10.1111/j.1365-2214.2007.00733.x.
    1. Venetsanou F., Kambas A. The effects of age and gender on balance skills in preschool children. FU Phys. Educ. Sport. 2011;9:81–90.
    1. Webster E.K., Martin C.K., Staiano A.E. Fundamental motor skills, screen-time, and physical activity in preschoolers. J. Sport Health Sci. 2019;8:114–121. doi: 10.1016/j.jshs.2018.11.006.
    1. Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L., Kim J.S., Heo S., Alves H., White S.M., et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA. 2011;108:3017–3022. doi: 10.1073/pnas.1015950108.
    1. Gearin B.M., Fien H. Translating the neuroscience of physical activity to education. Trends Neurosci. Educ. 2016;5:12–19. doi: 10.1016/j.tine.2016.02.001.
    1. Gómez-Pinilla F., Hillman C. The influence of exercise on cognitive abilities. Compr. Physiol. 2013;3:403–428. doi: 10.1002/cphy.c110063.
    1. Hillman C.H., Pontifex M.B., Castelli D.M., Khan N.A., Raine L.B., Scudder M.R., Drollette E.S., Moore R.D., Wu C.T., Kamijo K. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics. 2014;134:e1063–e1071. doi: 10.1542/peds.2013-3219.
    1. Winter D.A. Biomechanics and Motor Control of Human Movement. John Wiley & Sons; New York, NY, USA: 2009.
    1. Horak F.B., Kluzik J., Hlavacka F. Velocity dependence of vestibular information for postural control on tilting surfaces. J. Neurophysiol. 2016;116:1468–1479. doi: 10.1152/jn.00057.2016.
    1. Rajendran V., Roy F.G. An overview of motor skill performance and balance in hearing impaired children. Ital. J. Pediatrics. 2011;37:33. doi: 10.1186/1824-7288-37-33.
    1. Massion J. Postural control system. Curr. Opin. Neurobiol. 1994;4:877–887. doi: 10.1016/0959-4388(94)90137-6.
    1. Farinelli V., Palmisano C., Marchese S.M., Strano C.M.M., D’Arrigo S., Pantaleoni C., Ardissone A., Nardocci N., Esposti R., Cavallari P. Postural control in children with cerebellar ataxia. Appl. Sci. 2020;10:1606. doi: 10.3390/app10051606.
    1. Hahn M.E., Chou L. Can motion of individual body segments identify dynamic instability in the elderly? Clin. Biomech. 2003;18:737–744. doi: 10.1016/S0268-0033(03)00139-6.
    1. García-Liñeira J., García-Soidán J., Romo-Pérez V., Leirós-Rodríguez R. Reliability of accelerometric assessment of balance in children aged 6–12 years. BMC Pediatr. 2020;20:161–168. doi: 10.1186/s12887-020-02073-1.
    1. Leirós-Rodríguez R., García-Soidán J.L., Romo-Pérez V. Analyzing the use of accelerometers as a method of early diagnosis of alterations in balance in elderly people: A systematic review. Sensors. 2019;19:3883. doi: 10.3390/s19183883.
    1. Leirós-Rodríguez R., Romo-Pérez V., García-Soidán J.L. Validity and reliability of a tool for accelerometric assessment of static balance in women. Eur. J. Physiother. 2017;19:243–248. doi: 10.1080/21679169.2017.1347707.
    1. Tanner J.M. Growth at adolescence. In: Kracht J., editor. Endokrinologie der Entwicklung und Reifung. Symposion der Deutschen Gesellschaft für Endokrinologie in Ulm vom 26.—28. Volume 16. Springer; Berlin/Heidelberg, Germany: 1970.
    1. Miller B.S., Sarafoglou K., Addo O.Y. Development of Tanner stage age adjusted CDC height curves for research and clinical applications. J. Endocr. Soc. 2020;4 doi: 10.1210/jendso/bvaa098.
    1. Marceau K., Kirisci L., Tarter R.E. Correspondence of pubertal neuroendocrine and Tanner stage changes in boys and associations with substance use. Child Dev. 2019;90:e763–e782. doi: 10.1111/cdev.13101.
    1. Pinheiro A.C., Esteves F.C., Duarte R., Esteves E.A., Bressan J. Energy expenditure: Components and evaluation methods. Nutr. Hosp. 2011;26:430–440. doi: 10.1590/S0212-16112011000300002.
    1. Caspersen C.J., Powell K.E., Christenson G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–131.
    1. Hartmann A., Luzi S., Murer K., de Bie R.A., de Bruin E.D. Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait Posture. 2009;29:444–448. doi: 10.1016/j.gaitpost.2008.11.003.
    1. Leirós-Rodríguez R., Romo-Pérez V., García-Soidán J.L., Soto-Rodríguez A. identification of body balance deterioration of gait in women using accelerometers. Sustainability. 2020;12:1222. doi: 10.3390/su12031222.
    1. Leirós-Rodríguez R., Romo-Pérez V., García-Soidán J.L., García-Liñeira J. Percentiles and reference values for the Accelerometric assessment of static balance in women aged 50–80 years. Sensors. 2020;20:940. doi: 10.3390/s20030940.
    1. Aznar S., Lara M., Queralt A., Molina-García J. Psychosocial and environmental correlates of sedentary behaviors in Spanish children. BioMed Res. Int. 2017;2017:4728924. doi: 10.1155/2017/4728924.
    1. Shakir R.N., Coates A.M., Olds T., Rowlands A., Tsiros M.D. Not all sedentary behaviour is equal: Children’s adiposity and sedentary behaviour volumes, patterns and types. Obes. Res. Clin. Pract. 2018;12:506–512. doi: 10.1016/j.orcp.2018.09.001.
    1. Shumway-Cook A., Woollacott M.H. Motor Control: Theory and Practical Applications. Lippincott Williams & Wilkins; London, UK: 1995.
    1. Seidler R.D., Bernard J.A., Burutolu T.B., Fling B.W., Gordon M.T., Gwin J.T., Kwak Y., Lipps D.B. Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 2010;34:721–733. doi: 10.1016/j.neubiorev.2009.10.005.
    1. Karnath H.O., Ferber S., Dichgans J. The neural representation of postural control in humans. Proc. Natl. Acad. Sci. USA. 2000;97:13931–13936. doi: 10.1073/pnas.240279997.
    1. King A.C., Challis J.H., Bartok C., Costigan F.A., Newell K.M. Obesity, mechanical and strength relationships to postural control in adolescence. Gait Posture. 2012;35:261–265. doi: 10.1016/j.gaitpost.2011.09.017.
    1. Shams A., Vameghi R., Dehkordi P.S., Allafan N., Bayati M. The development of postural control among children: Repeatability and normative data for computerized dynamic posturography system. Gait Posture. 2020;78:40–47. doi: 10.1016/j.gaitpost.2020.03.002.
    1. Rispens S.M., van Schooten K.S., Pijnappels M., Daffertshofer A., Beek P.J., van Dieën J.H. Do extreme values of daily-life gait characteristics provide more information about fall risk than median values? JMIR Res. Protoc. 2015;4:e4. doi: 10.2196/resprot.3931.
    1. Freitas D.L., Lausen B., Maia J.A., Gouveia É.R., Antunes A.M., Thomis M., Lefevre J., Malina R.M. Skeletal maturation, fundamental motor skills, and motor performance in preschool children. Scan. J. Med. Sci. Sports. 2018;28:2358–2368. doi: 10.1111/sms.13233.
    1. Remer J., Croteau-Chonka E., Dean D.C., D’Arpino S., Dirks H., Whiley D., Deoni S.C.L. Quantifying cortical development in typically developing toddlers and young children, 1–6 years of age. Neuroimage. 2017;153:246–261. doi: 10.1016/j.neuroimage.2017.04.010.
    1. Malina R.M., Bouchard C., Bar-Or O. Growth, Maturation, and Physical Activity. 2nd ed. Human Kinetics Publishers; Champaing, IL, USA: 2004.
    1. Plandowska M., Lichota M., Gorniak K. Postural stability of 5-year-old girls and boys with different body heights. PLoS ONE. 2019;14:e0227119. doi: 10.1371/journal.pone.0227119.
    1. Horak F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35:ii7–ii11. doi: 10.1093/ageing/afl077.
    1. Shaffer S.W., Harrison A.L. Aging of the somatosensory system: A translational perspective. Phys. Ther. 2007;87:193–207. doi: 10.2522/ptj.20060083.
    1. Gaerlan M.G., Alpert P.T., Cross C., Louis M., Kowalski S. Postural balance in young adults: The role of visual, vestibular and somatosensory systems. J. Am. Acad. Nurse Pract. 2012;24:375–381. doi: 10.1111/j.1745-7599.2012.00699.x.
    1. Martínez-Andrés M., Bartolomé-Gutiérrez R., Rodríguez-Martín B., Pardo-Guijarro M.J., Martínez-Vizcaíno V. “Football is a boys’ game”: Children’s perceptions about barriers for physical activity during recess time. Int. J. Qual. Stud. Health Well Being. 2017;12:1379338. doi: 10.1080/17482631.2017.1379338.
    1. Kordi H., Sohrabi M., Saberi-Kakhki A., Attarzadeh-Hossini S. The effect of strength training based on process approach intervention on balance of children with developmental coordination disorder. Arch. Argent. Pediatr. 2016;114:526–533. doi: 10.5546/aap.2016.eng.526.
    1. Faulkner J.A., Larkin L.M., Claflin D.R., Brooks S.V. Age--related changes in the structure and function of skeletal muscles. Clin. Exp. Pharmacol. Physiol. 2007;34:1091–1096. doi: 10.1111/j.1440-1681.2007.04752.x.

Source: PubMed

3
S'abonner