Human Papillomavirus Infection and Cervical Cancer: Epidemiology, Screening, and Vaccination-Review of Current Perspectives

Chee Kai Chan, Gulzhanat Aimagambetova, Talshyn Ukybassova, Kuralay Kongrtay, Azliyati Azizan, Chee Kai Chan, Gulzhanat Aimagambetova, Talshyn Ukybassova, Kuralay Kongrtay, Azliyati Azizan

Abstract

Viral infections contribute as a cause of 15-20% of all human cancers. Infection by oncogenic viruses can promote different stages of carcinogenesis. Among many types of HPV, around 15 are linked to cancer. In spite of effective screening methods, cervical cancer continues to be a major public health problem. There are wide differences in cervical cancer incidence and mortality by geographic region. In addition, the age-specific HPV prevalence varies widely across different populations and showed two peaks of HPV positivity in younger and older women. There have been many studies worldwide on the epidemiology of HPV infection and oncogenic properties due to different HPV genotypes. However, there are still many countries where the population-based prevalence has not yet been identified. Moreover, cervical cancer screening strategies are different between countries. Organized cervical screening programs are potentially more effective than opportunistic screening programs. Nevertheless, screening programs have consistently been associated with a reduction in cervical cancer incidence and mortality. Developed countries have achieved such reduced incidence and mortality from cervical cancer over the past 40 years. This is largely due to the implementation of organized cytological screening and vaccination programs. HPV vaccines are very effective at preventing infection and diseases related to the vaccine-specific genotypes in women with no evidence of past or current HPV infection. In spite of the successful implementation of the HPV vaccination program in many countries all over the world, problems related to HPV prevention and treatment of the related diseases will continue to persist in developing and underdeveloped countries.

Conflict of interest statement

The authors declare that they have no conflicts of interests with respect to this paper.

Copyright © 2019 Chee Kai Chan et al.

Figures

Figure 1
Figure 1
Progression of cervical cancerogenesis which involves HPV gene integration, leading to sustained expression of E6 and E7, impacting and dysregulating the various pathways including the inactivation and degradation of p53 and pRB that lead to uncontrolled cellular division, proliferation, tumor suppressor evasion, and other features of tumorigenicity.

References

    1. McLaughlin-Drubin M. E., Munger K. Viruses associated with human cancer. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2008;1782(3):127–150. doi: 10.1016/j.bbadis.2007.12.005.
    1. Walboomers J. M. M., Jacobs M. V., Manos M. M., et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. The Journal of Pathology. 1999;189(1):12–19. doi: 10.1002/(sici)1096-9896(199909)189:1<12::aid-path431>;2-f.
    1. Asiaf A., Ahmad S. T., Mohammad S. O., Zargar M. A. Review of the current knowledge on the epidemiology, pathogenesis, and prevention of human papillomavirus infection. European Journal of Cancer Prevention. 2014;23(3):206–224. doi: 10.1097/cej.0b013e328364f273.
    1. Reid R., Stanhope C. R., Herschman B. R., Booth E., Phibbs G. D., Smith J. P. Genital warts and cervical cancer. I. Evidence of an association between subclinical papillomavirus infection and cervical malignancy. Cancer. 1982;50(2):377–387. doi: 10.1002/1097-0142(19820715)50:2<377::aid-cncr2820500236>;2-a.
    1. Jing Y., Wang T., Chen Z., et al. Phylogeny and polymorphism in the long control regions E6, E7, and L1 of HPV Type 56 in women from southwest China. Molecular Medicine Reports. 2018;17(5):7131–7141. doi: 10.3892/mmr.2018.8743.
    1. Bernard H.-U., Burk R. D., Chen Z., van Doorslaer K., Hausen H. Z., de Villiers E.-M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70–79. doi: 10.1016/j.virol.2010.02.002.
    1. Burk R. D., Harari A., Chen Z. Human papillomavirus genome variants. Virology. 2013;445(1-2):232–243. doi: 10.1016/j.virol.2013.07.018.
    1. Pande S., Jain N., Prusty B. K., et al. Human papillomavirus type 16 variant analysis of E6, E7, and L1 genes and long control region in biopsy samples from cervical cancer patients in North India. Journal of Clinical Microbiology. 2008;46(3):1060–1066. doi: 10.1128/jcm.02202-07.
    1. Ramas V., Mirazo S., Bonilla S., Ruchansky D., Arbiza J. Analysis of human papillomavirus 16 E6, E7 genes and Long Control Region in cervical samples from Uruguayan women. Gene. 2018;654:103–109. doi: 10.1016/j.gene.2018.02.023.
    1. Lehoux M., D’Abramo C. M., Archambault J. Molecular mechanisms of human papillomavirus-induced carcinogenesis. Public Health Genomics. 2009;12(5-6):268–280. doi: 10.1159/000214918.
    1. Insinga R. P., Dasbach E. J., Elbasha E. H. Epidemiologic natural history and clinical management of Human Papillomavirus (HPV) Disease: a critical and systematic review of the literature in the development of an HPV dynamic transmission model. BMC Infectious Diseases. 2009;9(1):p. 119. doi: 10.1186/1471-2334-9-119.
    1. Stanley M. Pathology and epidemiology of HPV infection in females. Gynecologic Oncology. 2010;117(2):S5–S10. doi: 10.1016/j.ygyno.2010.01.024.
    1. Skinner S. R., Wheeler C. M., Romanowski B., et al. Progression of HPV infection to detectable cervical lesions or clearance in adult women: analysis of the control arm of the VIVIANE study. International Journal of Cancer. 2016;138(10):2428–2438. doi: 10.1002/ijc.29971.
    1. Brianti P., De Flammineis E., Mercuri S. R. Review of HPV-related diseases and cancers. New Microbiologica. 2017;40(2):80–85.
    1. Mirabello L., Clarke M. A., Nelson C. W., et al. The intersection of HPV epidemiology, genomics and mechanistic studies of HPV-mediated carcinogenesis. Viruses. 2018;10(2) doi: 10.3390/v10020080.
    1. Moscicki A.-B., Ma Y., Wibbelsman C., et al. Rate of and risks for regression of cervical intraepithelial neoplasia 2 in adolescents and young women. Obstetrics and Gynecology. 2010;116(6):1373–1380. doi: 10.1097/aog.0b013e3181fe777f.
    1. Rositch A. F., Burke A. E., Viscidi R. P., Silver M. I., Chang K., Gravitt P. E. Contributions of recent and past sexual partnerships on incident human papillomavirus detection: acquisition and reactivation in older women. Cancer Research. 2012;72(23):6183–6190. doi: 10.1158/0008-5472.can-12-2635.
    1. Gravitt P. E., Rositch A. F., Silver M. I., et al. A cohort effect of the sexual revolution may be masking an increase in human papillomavirus detection at menopause in the United States. The Journal of Infectious Diseases. 2013;207(2):272–280. doi: 10.1093/infdis/jis660.
    1. McCredie M. R., Sharples K. J., Paul C., et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. The Lancet Oncology. 2008;9(5):425–434. doi: 10.1016/s1470-2045(08)70103-7.
    1. Rodriguez A. C., Schiffman M., Herrero R., et al. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. JNCI Journal of the National Cancer Institute. 2008;100(7):513–517. doi: 10.1093/jnci/djn044.
    1. WHO. Comprehensive Cervical Cancer Control: A Guide to Essential Practice. 2nd. Geneva, Switzerland: WHO; 2014.
    1. Arbyn M., Anttila A., Jordan J., et al. European guidelines for quality assurance in cervical cancer screening. Second edition--summary document. Annals of Oncology. 2010;21(3):448–458. doi: 10.1093/annonc/mdp471.
    1. Ronco G., Dillner J., Elfström K. M., et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. The Lancet. 2014;383(9916):524–532. doi: 10.1016/S0140-6736(13)62218-7.
    1. Kjær S. K., Frederiksen K., Munk C., Iftner T. Long-term absolute risk of cervical intraepithelial neoplasia grade 3 or worse following human papillomavirus infection: role of persistence. Journal of the National Cancer Institute. 2010;102(19):1478–1488.
    1. Argyri E., Tsimplaki E., Daskalopoulou D., et al. E6/E7 mRNA expression of high-risk HPV types in 849 Greek women. Anticancer Research. 2013;33(9):4007–4011.
    1. Cattani P., Zannoni G. F., Ricci C., et al. Clinical performance of human papillomavirus E6 and E7 mRNA testing for high-grade lesions of the cervix. Journal of Clinical Microbiology. 2009 Dec;47(12):3895–3901. doi: 10.1128/JCM.01275-09.
    1. Zhang B., Chen W., Roman A. The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proceedings of the National Academy of Sciences. 2006;103(2):437–442. doi: 10.1073/pnas.0510012103.
    1. White E. A., Kramer R. E., Tan M. J. A., Hayes S. D., Harper J. W., Howley P. M. Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. Journal of Virology. 2012;86(24):13174–13186. doi: 10.1128/jvi.02172-12.
    1. Neveu G., Cassonnet P., Vidalain P.-O., et al. Comparative analysis of virus-host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase. Methods. 2012;58(4):349–359. doi: 10.1016/j.ymeth.2012.07.029.
    1. Schiffman M., Doorbar J., Wentzensen N., et al. Carcinogenic human papillomavirus infection. Nature Reviews Disease Primers. 2016;2(1):p. 16086. doi: 10.1038/nrdp.2016.86.
    1. Katzenellenbogen R. Telomerase induction in HPV infection and oncogenesis. Viruses. 2017;9(7):p. E180. doi: 10.3390/v9070180.
    1. Jung H., Phillips B. L., Chan E. K. miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3ζ. Molecular Cancer. 2014;13(1):p. 80. doi: 10.1186/1476-4598-13-80.
    1. Moody C. Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. Viruses. 2017;9(9) doi: 10.3390/v9090261.
    1. Groves I. J., Coleman N. Pathogenesis of human papillomavirus-associated mucosal disease. The Journal of Pathology. 2015;235(4):527–538. doi: 10.1002/path.4496.
    1. Lee S. S., Weiss R. S., Javier R. T. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proceedings of the National Academy of Sciences. 1997;94(13):6670–6675. doi: 10.1073/pnas.94.13.6670.
    1. Glaunsinger B. A., Lee S. S., Thomas M., Banks L., Javier R. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene. 2000;19(46):5270–5280. doi: 10.1038/sj.onc.1203906.
    1. Nakagawa S., Huibregtse J. M. Human Scribble (vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Molecular and Cellular Biology. 2000;20(21):8244–8253. doi: 10.1128/MCB.20.21.8244-8253.2000.
    1. Hoppe-Seyler K., Bossler F., Braun J. A., Herrmann A. L., Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends in Microbiology. 2018;26(2):158–168. doi: 10.1016/j.tim.2017.07.007.
    1. Burgers W. A., Blanchon L., Pradhan S., Launoit Y. d., Kouzarides T., Fuks F. Viral oncoproteins target the DNA methyltransferases. Oncogene. 2007;26(11):1650–1655. doi: 10.1038/sj.onc.1209950.
    1. Hong D., Ye F., Lu W., et al. Methylation status of the long control region of HPV 16 in clinical cervical specimens. Molecular Medicine Reports. 2008;1:555–560.
    1. Ferlay J., Soerjomataram I., Dikshit R., et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer. 2015;136(5):E359–E386. doi: 10.1002/ijc.29210.
    1. Altobelli E., Rapacchietta L., Profeta V. F., Fagnano R. HPV-vaccination and cancer cervical screening in 53 WHO European Countries: an update on prevention programs according to income level. Cancer Medicine. 2019;8(5):2524–2534. doi: 10.1002/cam4.2048.
    1. Bruni L., Barrionuevo-Rosas L., Albero G., et al. Barcelona, Spain: ICO Information Centre on HPV and Cancer (HPV Information Centre); 2014. Human papillomavirus and related diseases in Kazakhstan. Summary Report.
    1. International Agency for Research on Cancer. European Guidelines for Quality Assurance in Cervical Cancer Screening. Lyon, France: International Agency for Research on Cancer; 2007.
    1. Cohen P. A., Jhingran A., Oaknin A., Denny L. Cervical cancer. The Lancet. 2019 Jan 12;393(10167):169–182. doi: 10.1016/S0140-6736(18)32470-X.
    1. Bray F., Lortet-Tieulent J., Znaor A., Brotons M., Poljak M., Arbyn M. Patterns and trends in human papillomavirus-related diseases in central and Eastern Europe and central Asia. Vaccine. 2013;31:H32–H45. doi: 10.1016/j.vaccine.2013.02.071.
    1. Ferlay J., Shin H.-R., Bray F., Forman D., Mathers C., Parkin D. M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer. 2010;127(12):2893–2917. doi: 10.1002/ijc.25516.
    1. Adegoke O., Kulasingam S., Virnig B. Cervical cancer trends in the United States: a 35-year population-based analysis. Journal of Women’s Health. 2012;21(10):1031–1037. doi: 10.1089/jwh.2011.3385.
    1. Clifford G., Gallus S., Herrero R., et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. The Lancet. 2005;366(9490):991–998. doi: 10.1016/s0140-6736(05)67069-9.
    1. Bruni L., Diaz M., Castellsagué X., Ferrer E., Bosch F. X., de Sanjosé S. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. The Journal of Infectious Diseases. 2010;202(12):1789–1799. doi: 10.1086/657321.
    1. de Sanjosé S., Diaz M., Castellsagué X., et al. Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. The Lancet Infectious Diseases. 2007;7(7):453–459. doi: 10.1016/s1473-3099(07)70158-5.
    1. Bansal D., Elmi A. A., Skariah S., et al. Molecular epidemiology and genotype distribution of Human Papillomavirus (HPV) among Arab women in the State of Qatar. Journal of Translational Medicine. 2014;12(1):p. 300. doi: 10.1186/s12967-014-0300-4.
    1. Niyazmetova L., Aimagambetova G., Stambekova N., et al. Application of molecular genotyping to determine prevalence of HPV strains in Pap smears of Kazakhstan women. International Journal of Infectious Diseases. 2017;54:85–88. doi: 10.1016/j.ijid.2016.11.410.
    1. Tornesello M. L., Cassese R., De Rosa N., et al. High prevalence of human papillomavirus infection in Eastern European and West African women immigrants in South Italy. APMIS. 2011;119(10):701–709. doi: 10.1111/j.1600-0463.2011.02784.x.
    1. De Vuyst H., Parisi M. R., Karani A., et al. The prevalence of human papillomavirus infection in Mombasa, Kenya. Cancer Causes and Control. 2010;21(12):2309–2313. doi: 10.1007/s10552-010-9645-z.
    1. Kangmennaang J., Onyango E. O., Luginaah I., Elliott S. J. The next Sub Saharan African epidemic? A case study of the determinants of cervical cancer knowledge and screening in Kenya. Social Science and Medicine. 2018;197:203–212. doi: 10.1016/j.socscimed.2017.12.013.
    1. Grabowski M. K., Gravitt P. E., Gray R. H., et al. Trends and determinants of human papillomavirus concordance among human immunodeficiency virus-positive and -negative heterosexual couples in rakai, Uganda. Journal of Infectious Diseases. 2017;215(5):772–780.
    1. Wheeler C. M. Natural history of human papillomavirus infections, cytologic and histologic abnormalities, and cancer. Obstetrics and Gynecology Clinics of North America. 2008;35(4):519–536. doi: 10.1016/j.ogc.2008.09.006.
    1. Muñoz N., Bosch F. X., de Sanjosé S., et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. New England Journal of Medicine. 2003;348(6):518–527. doi: 10.1056/nejmoa021641.
    1. International Agency for Research on Cancer. IARC Handbooks of Cancer Prevention. Vol. 10. Lyon, France: IARC Press; 2005. Cervix cancer screening. International agency for research on cancer; pp. 1–302.
    1. Zucchetto A., Ronco G., Giorgi Rossi P., et al. Screening patterns within organized programs and survival of Italian women with invasive cervical cancer. Preventive Medicine. 2013;57(3):220–226. doi: 10.1016/j.ypmed.2013.05.018.
    1. Bucchi L., Baldacchini F., Mancini S., et al. Estimating the impact of an organised screening programme on cervical cancer incidence: a 26-year study from northern Italy. International Journal of Cancer. 2018;144(5) doi: 10.1002/ijc.31806.
    1. Rogovskaya S. I., Shabalova I. P., Mikheeva I. V., et al. Human papillomavirus prevalence and type-distribution, cervical cancer screening practices and current status of vaccination implementation in Russian Federation, the Western countries of the former Soviet Union, Caucasus region and Central Asia. Vaccine. 2013;31(7):H46–H58. doi: 10.1016/j.vaccine.2013.06.043.
    1. Peirson L., Fitzpatrick-Lewis D., Ciliska D., Warren R. Screening for cervical cancer: a systematic review and meta-analysis. Systematic Reviews. 2013;2(1):p. 35. doi: 10.1186/2046-4053-2-35.
    1. Engholm G., Ferlay J., Christensen N. NORDCAN: Cancer Incidence, Mortality, Prevalence and Survival in the Nordic Countries, Version 6.1. Copenhagen, Denmark: Cancer Registries, Danish Cancer Society; 2014.
    1. Virginia A. Screening for cervical cancer: U.S. Preventive services task force recommendation statement. Annals of Internal Medicine. 2012;156:880–890. doi: 10.7326/0003-4819-156-12-201206190-00424.
    1. Sudenga S. L., Rositch A. F., Otieno W. A., Smith J. S. Knowledge, attitudes, practices, and perceived risk of cervical cancer among Kenyan women: brief report. International Journal of Gynecologic Cancer. 2013;23(5):895–899. doi: 10.1097/igc.0b013e31828e425c.
    1. World Health Organization. WHO Guidance Note: Comprehensive Cervical Cancer Prevention and Control: A Healthier Future for Girls and Women. Geneva, Switzerland: World Health Organization; 2013.
    1. Glick S. B., Clarke A. R., Blanchard A., Whitaker A. K. Cervical cancer screening, diagnosis and treatment interventions for racial and ethnic minorities: a Systematic Review. Journal of General Internal Medicine. 2012;27(8):1016–1032. doi: 10.1007/s11606-012-2052-2.
    1. Sankaranarayanan R., Anorlu R., Sangwa-Lugoma G., Denny L. A. Infrastructure requirements for human papillomavirus vaccination and cervical cancer screening in Sub-Saharan Africa. Vaccine. 2013;31:F47–F52. doi: 10.1016/j.vaccine.2012.06.066.
    1. White A., Thompson T. D., White M. C., et al. Cancer screening test use—United States, 2015. MMWR. Morbidity and Mortality Weekly Report. 2017;66(8):201–206. doi: 10.15585/mmwr.mm6608a1.
    1. Olson B., Gribble B., Dias J., et al. Cervical cancer screening programs and guidelines in low- and middle-income countries. International Journal of Gynecology and Obstetrics. 2016;134(3):239–246. doi: 10.1016/j.ijgo.2016.03.011.
    1. Smith R. A., Andrews K. S., Brooks D., et al. Cancer screening in the United States, 2017: a review of current American Cancer Society guidelines and current issues in cancer screening. CA: A Cancer Journal for Clinicians. 2017;67(2):100–121. doi: 10.3322/caac.21392.
    1. Canfell K., Sitas F., Beral V. Cervical cancer in Australia and the United Kingdom: comparison of screening policy and uptake, and cancer incidence and mortality. Medical Journal of Australia. 2006;185(9):482–486. doi: 10.5694/j.1326-5377.2006.tb00661.x.
    1. Centers for Disease Control and Prevention (CDC) Cervical cancer screening among women aged 18-30 years - United States, 2000-2010. Morbidity and Mortality Weekly Report. 2013;61(51-52):1038–1042.
    1. Gupta R., Gupta S., Mehrotra R., Sodhani P. Cervical cancer screening in resource-constrained countries: current status and future directions. Asian Pacific Journal of Cancer Prevention. 2017;18(6):1461–1467. doi: 10.22034/APJCP.2017.18.6.1461.
    1. Gunderson C. C., Nugent E. K., McMeekin D. S., Moore K. N. Distance traveled for treatment of cervical cancer. International Journal of Gynecological Cancer. 2013;23(6):1099–1103. doi: 10.1097/igc.0b013e3182989464.
    1. Brotherton J. M. L. Impact of HPV vaccination: achievements and future challenges. Papillomavirus Research. 2019;7:138–140. doi: 10.1016/j.pvr.2019.04.004.
    1. Tanaka H., Shirasawa H., Shimizu D., et al. Preventive effect of human papillomavirus vaccination on the development of uterine cervical lesions in young Japanese women. Journal of Obstetrics and Gynaecology Research. 2017;43(10):1597–1601. doi: 10.1111/jog.13419.
    1. Schiller J., Lowy D. Explanations for the high potency of HPV prophylactic vaccines. Vaccine. 2018;36(32):4768–4773. doi: 10.1016/j.vaccine.2017.12.079.
    1. Nygård M., Saah A., Munk C., et al. Evaluation of the long-term anti-human papillomavirus 6 (HPV6), 11, 16, and 18 immune responses generated by the quadrivalent HPV vaccine. Clinical and Vaccine Immunology. 2015;22(8):943–948. doi: 10.1128/cvi.00133-15.
    1. United States Food and Drug Administration. FDA approves gardasil 9 for prevention of certain cancers caused by five additional types of HPV. August 2018. .
    1. Palmer T., Wallace L., Pollock K. G., et al. Prevalence of cervical disease at age 20 after immunisation with bivalent HPV vaccine at age 12-13 in Scotland: retrospective population study. BMJ. 2019;365:p. l1161. doi: 10.1136/bmj.l1161.
    1. Gertig D. M., Brotherton J. M., Budd A. C., Drennan K., Chappell G., Saville A. M. Impact of a population-based HPV vaccination program on cervical abnormalities: a data linkage study. BMC Medicine. 2013;11(1):p. 227. doi: 10.1186/1741-7015-11-227.
    1. Mahmud S. M., Kliewer E. V., Lambert P., Bozat-Emre S., Demers A. A. Effectiveness of the quadrivalent human papillomavirus vaccine against cervical dysplasia in manitoba, Canada. Journal of Clinical Oncology. 2014;32(5):438–443. doi: 10.1200/JCO.2013.52.4645.
    1. Campos N. G., Tsu V., Jeronimo J., Mvundura M., Kim J. J. Evidence-based policy choices for efficient and equitable cervical cancer screening programs in low-resource settings. Cancer Medicine. 2017;6(8):2008–2014. doi: 10.1002/cam4.1123.
    1. White M. C., Wong F. L. Preventing premature deaths from breast and cervical cancer among underserved women in the United States: insights gained from a national cancer screening program. Cancer Causes and Control. 2015;26(5):805–809. doi: 10.1007/s10552-015-0541-4.
    1. Drolet M., Bénard É., Boily M.-C., et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. The Lancet Infectious Diseases. 2015;15(5):565–580. doi: 10.1016/s1473-3099(14)71073-4.
    1. Wong C. A., Saraiya M., Hariri S., et al. Approaches to monitoring biological outcomes for HPV vaccination: challenges of early adopter countries. Vaccine. 2011;29(5):878–885. doi: 10.1016/j.vaccine.2010.10.018.
    1. Garland S. M., Kjaer S. K., Muñoz N., et al. Impact and effectiveness of the Quadrivalent human papillomavirus vaccine: a systematic review of 10 years of real-world experience. Clinical Infectious Diseases. 2016;63(4):519–527. doi: 10.1093/cid/ciw354.
    1. Bosch F. X., Robles C., Díaz M., et al. HPV-FASTER: broadening the scope for prevention of HPV-related cancer. Nature Reviews Clinical Oncology. 2015;13(2):119–132. doi: 10.1038/nrclinonc.2015.146.

Source: PubMed

3
S'abonner