Aortic stiffness is independently associated with interstitial myocardial fibrosis by native T1 and accelerated in the presence of chronic kidney disease

Mengzhen Chen, Luca Arcari, Juergen Engel, Tilo Freiwald, Steffen Platschek, Hui Zhou, Hafisyatul Zainal, Stefan Buettner, Andreas M Zeiher, Helmut Geiger, Ingeborg Hauser, Eike Nagel, Valentina O Puntmann, Mengzhen Chen, Luca Arcari, Juergen Engel, Tilo Freiwald, Steffen Platschek, Hui Zhou, Hafisyatul Zainal, Stefan Buettner, Andreas M Zeiher, Helmut Geiger, Ingeborg Hauser, Eike Nagel, Valentina O Puntmann

Abstract

Background: Patients with chronic kidney disease (CKD) have considerable cardiovascular morbidity and mortality. Aortic stiffness is an independent predictor of cardiovascular risk and related to left ventricular remodeling and heart failure. Myocardial fibrosis is the pathophysiological hallmark of the failing heart.

Methods and results: An observational study of consecutive CKD patients (n = 276) undergoing comprehensive clinical cardiovascular magnetic resonance imaging. The relationship between aortic stiffness, myocardial fibrosis, left ventricular remodeling and the severity of chronic kidney disease was examined. Compared to age-gender matched controls with no known kidney disease (n = 242), CKD patients had considerably higher myocardial native T1 and central aortic PWV (p ≪ 0.001), as well as abnormal diastolic relaxation by E/e' (mean) by echocardiography (p ≪ 0.01). A third of all patients had LGE, with similar proportions for the presence and the (ischaemic and non-ischaemic) pattern between the groups. PWV was strongly associated with and age, NT-proBNP and native T1 in both groups, but not with LGE presence or type; the associations were amplified in severe CKD stages. In multivariate analyses, PWV was independently associated with native T1 in both groups (p ≪ 0.01) with near two-fold increase in adjusted R2 in the presence of CKD (native T1 (10 ms) R2, B(95%CI) CKD vs. non-CKD 0.28, 0.2(0.15-0.25) vs. 0.18, 0.1(0.06-0.15), p ≪ 0.01).

Conclusions: Aortic stiffness and interstitial myocardial fibrosis are interrelated; this association is accelerated in the presence of CKD, but independent of LGE. Our findings reiterate the significant contribution of CKD-related factors to the pathophysiology of cardiovascular remodeling.

Keywords: Aortic stiffness; Chronic kidney disease; Native T1 mapping.

Conflict of interest statement

No conflict of interests.

Figures

Fig. 1
Fig. 1
CMR imaging protocol, consisting of native T1 mapping, stress-myocardial perfusion for relevant myocardial ischaemia. Cine-imaging for cardiac volumes and LV mass, late gadolinium enhancement and PWV for central aortic stiffness. Rest myocardial perfusion was not performed in line with restricted allowance of GBCA in CKD [21,22].
Fig. 2
Fig. 2
Aortic stiffness and diffuse myocardial fibrosis are negatively associated with severity of CKD. Bivariate associations between native T1 and PWV with eGFR (r = −0.31 and r = −0.44, p ≪ 0.001, respectively).
Fig. 3
Fig. 3
Associations between aortic stiffness and markers of diffuse myocardial fibrosis, stiffness and remodeling are potentiated with severity of CKD. Bivariate correlations between PWV and native T1, E/e′ (mean), LV mass index and LV-EF.
Fig. 4
Fig. 4
Pulse wave velocity correlations and CKD Stages (Table 3). Native T1 has the strongest association with PWV in all stages, followed by E/e′, LVmass in stage 3 and LV-EF in stage 4. *p ≪ 0.05, **p ≪ 0.01.

References

    1. Gross M.-L., Ritz E. Hypertrophy and fibrosis in the cardiomyopathy of uremia—beyond coronary heart disease. Semin. Dial. 2008;21:308–318.
    1. Mangion K., McDowell K., Mark P.B., Rutherford E. Characterizing cardiac involvement in chronic kidney disease using CMR-a systematic review. Curr. Cardiovasc. Imaging Rep. 2018;11:2.
    1. Tonelli M., Wiebe N., Culleton B., House A., Rabbat C., Fok M., McAlister F., Garg A.X. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 2006;17:2034–2047.
    1. Adenwalla S.F., Graham-Brown M.P.M., Leone F.M.T., Burton J.O., McCann G.P. The importance of accurate measurement of aortic stiffness in patients with chronic kidney disease and end-stage renal disease. Clin. Kidney J. 2017;10:503–515.
    1. Karras A., Haymann J.-P., Bozec E., Metzger M., Jacquot C., Maruani G., Houillier P., Froissart M., Stengel B., Guardiola P., Laurent S., Boutouyrie P., Briet M., Nephro Test Study Group Large artery stiffening and remodeling are independently associated with all-cause mortality and cardiovascular events in chronic kidney disease. Hypertension. 2012;60:1451–1457.
    1. Verbeke F., Maréchal C., Van Laecke S., Van Biesen W., Devuyst O., Van Bortel L.M., Jadoul M., Vanholder R. Aortic stiffness and central wave reflections predict outcome in renal transplant recipients. Hypertension. 2011;58:833–838.
    1. Chirinos J.A., Kips J.G., Jacobs D.R., Brumback L., Duprez D.A., Kronmal R., Bluemke D.A., Townsend R.R., Vermeersch S., Segers P. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis) J. Am. Coll. Cardiol. 2012;60:2170–2177.
    1. Redheuil A., Wu C.O., Kachenoura N., Ohyama Y., Yan R.T., Bertoni A.G., Hundley G.W., Duprez D.A., Jacobs D.R., Daniels L.B., Darwin C., Sibley C., Bluemke D.A., Lima J.A.C. Proximal aortic distensibility is an independent predictor of all-cause mortality and incident CV events: the MESA study. J. Am. Coll. Cardiol. 2014;64:2619–2629.
    1. Ohyama Y., Ambale-Venkatesh B., Noda C., Chugh A.R., Teixido-Tura G., Kim J.-Y., Donekal S., Yoneyama K., Gjesdal O., Redheuil A., Liu C.-Y., Nakamura T., Wu C.O., Hundley W.G., Bluemke D.A., Lima J.A.C. Association of aortic stiffness with left ventricular remodeling and reduced left ventricular function measured by magnetic resonance imaging clinical perspective. Circ. Cardiovasc. Imaging. 2016;9
    1. Bonapace S., Rossi A., Cicoira M., Golia G., Zanolla L., Franceschini L., Conte L., Marino P., Zardini P., Vassanelli C. Aortic stiffness correlates with an increased extracellular matrix turnover in patients with dilated cardiomyopathy. Am. Heart J. 2006;152 (93.e1–6)
    1. Puntmann V.O., Arroyo Ucar E., Hinojar Baydes R., Ngah N.B., Kuo Y.S., Dabir D., Macmillan A., Cummins C., Higgins D.M., Gaddum N., Chowienczyk P., Plein S., Carr-White G., Nagel E. Aortic stiffness and interstitial myocardial fibrosis by native T1 are independently associated with left ventricular remodeling in patients with dilated cardiomyopathy. Hypertension. 2014;64:762–768.
    1. Child N., Suna G., Dabir D., Yap M.L., Rogers T., Kathirgamanathan M., Arroyo Ucar E., Hinojar R., Mahmoud I., Young C., Wendler O., Mayr M., sandhu B., Morton G., Muhly-Reinholz M., Dimmeler S., Nagel E., Puntmann V.O. Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction. Eur. Heart J. Cardiovasc. Imaging. 2017;119:277.
    1. Puntmann V.O., Carr-White G., Jabbour A., Yu C.-Y., Gebker R., Kelle S., Hinojar R., Doltra A., Varma N., Child N., Rogers T., Suna G., Arroyo Ucar E., Goodman B., Khan S., Dabir D., Herrmann E., Zeiher A.M., Nagel E. T1-mapping and outcome in nonischemic cardiomyopathy. JACC Cardiovasc. Imaging. 2016;9:40–50.
    1. Puntmann V.O., Carr-White G., Jabbour A., Yu C.-Y., Gebker R., Kelle S., Rolf A., Zitzmann S., Peker E., D'Angelo T., Pathan F., Elen Valbuena S., Hinojar R., Arendt C., Narula J., Herrmann E., Zeiher A.M., Nagel E. International T1 Multicentre CMR Outcome Study. Native T1 and ECV of noninfarcted myocardium and outcome in patients with coronary artery disease. J. Am. Coll. Cardiol. 2018;71:766–778.
    1. Lee H., Park J.B., Yoon Y.E., Park E.A., Kim H.K., Lee W., Kim Y.J., Cho G.Y., Sohn D.W., Greiser A., Lee S.P. Noncontrast myocardial T1 mapping by cardiac magnetic resonance predicts outcome in patients with aortic stenosis. JACC Cardiovasc. Imaging. 2018;11:974–983.
    1. Rogers T., Dabir D., Mahmoud I., Voigt T., Schaeffter T., Nagel E., Puntmann V.O. Standardization of T1 measurements with MOLLI in differentiation between health and disease – the ConSept study. J. Cardiovasc. Magn. Reson. 2013;15:78.
    1. Dabir D., Child N., Kalra A., Rogers T., Gebker R., Jabbour A., Plein S., Yu C.-Y., Otton J., Kidambi A., McDiarmid A., Broadbent D., Higgins D.M., Schnackenburg B., Foote L., Cummins C., Nagel E., Puntmann V.O. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2014;16:34.
    1. (last accessed March 1st, 2019).
    1. (last accessed March 1st 2019).
    1. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. 2016;:1–78. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corrà U, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FDR, Løchen ML, Löllgen H, Marques-Vidal P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WMM, Binno S. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J.. 2016;37(29):2315–2381.
    1. Reiter T., Ritter O., Prince M.R., Nordbeck P., Wanner C., Nagel E., Bauer W. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2012;14:31.
    1. (last accessed March 1st 2019).
    1. Hussain S.T., Paul M., Plein S., McCann G.P., Shah A.M., Marber M.S., Chiribiri A., Morton G., Redwood S., MacCarthy P., Schuster A., Ishida M., Westwood M.A., Perera D., Nagel E. Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance imaging to guide the management of patients with stable coronary artery disease. J. Cardiovasc. Magn. Reson. 2012;14:65.
    1. Task Force Members, Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., Budaj A., Bugiardini R., Crea F., Cuisset T., Di Mario C., Ferreira J.R., Gersh B.J., Gitt A.K., Hulot J.-S., Marx N., Opie L.H., Pfisterer M., Prescott E., Ruschitzka F., Sabaté M., Senior R., Taggart D.P., van der Wall E.E., CJM Vrints, ESC Committee for Practice Guidelines, Baumgartner H., Bax J.J., Bueno H., Dean V., Deaton C., Erol C., Fagard R., Ferrari R., Hoes A.W., Kirchhof P., Kolh P., Linhart A., Nihoyannopoulos P., Ponikowski P., Sirnes P.A., Tamargo J.L., Tendera M., Torbicki A., Windecker S., Reviewers Document, Knuuti J., Valgimigli M., Claeys M.J., Donner-Banzhoff N., Frank H., Funck-Brentano C., Gaemperli O., Gonzalez-Juanatey J.R., Hamilos M., Hasdai D., Husted S., James S.K., Kervinen K., Kristensen S.D., Lancellotti P., Maggioni A.P., Piepoli M.F., Pries A.R., Romeo F., Rydén L., Simoons M.L., Steg P.G., Timmis A., Wijns W., Yildirir A., Zamorano J.L. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European society of cardiology. Eur. Heart J. 2013;34:2949–3003.
    1. Puntmann V.O., Valbuena S., Hinojar R., Petersen S.E., Greenwood J.P., Kramer C.M., Kwong R.Y., McCann G.P., Berry C., Nagel E., SCMR Clinical Trial Writing Group Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I - analytical validation and clinical qualification. J. Cardiovasc. Magn. Reson. 2018;20(1):67.
    1. Schulz-Menger J., Bluemke D.A., Bremerich J., Flamm S.D., Fogel M.A., Friedrich M.G., Kim R.J., Knobelsdorff-Brenkenhoff von F., Kramer C.M., Pennell D.J., Plein S., Nagel E. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J. Cardiovasc. Magn. Reson. 2013;15:35.
    1. Rutherford E., Talle M.A., Mangion K., Bell E., Rauhalammi S.M., Roditi G., McComb C., Radjenovic A., Welsh P., Woodward R., Struthers A.D., Jardine A.G., Patel R.K., Berry C., Mark P.B. Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int. 2016;90:845–852.
    1. Graham-Brown M.P.M., Rutherford E., Levelt E., March D.S., Churchward D.R., Stensel D.J., McComb C., Mangion K., Cockburn S., Berry C., Moon J.C., Mark P.B., Burton J.O., McCann G.P. Native T1 mapping: inter-study, inter-observer and inter-center reproducibility in hemodialysis patients. J. Cardiovasc. Magn. Reson. 2017;19:21.
    1. Edwards N.C., Moody W.E., Yuan M., Hayer M.K., Ferro C.J., Townend J.N., Steeds R.P. Diffuse interstitial fibrosis and myocardial dysfunction in early chronic kidney disease. Am. J. Cardiol. 2015;115:1311–1317.
    1. Peterson G.E., de Backer T., Contreras G., Wang X., Kendrick C., Greene T., Appel L.J., Randall O.S., Lea J., Smogorzewski M., Vagaonescu T., Phillips R.A., African American Study of Kidney Disease Investigators Relationship of left ventricular hypertrophy and diastolic function with cardiovascular and renal outcomes in African Americans with hypertensive chronic kidney disease. Hypertension. 2013;62:518–525.
    1. Mark P.B., Doyle A., Blyth K.G., Patel R.K., Weir R.A.P., Steedman T., Foster J.E., Dargie H.J., Jardine A.G. Vascular function assessed with cardiovascular magnetic resonance predicts survival in patients with advanced chronic kidney disease. J. Cardiovasc. Magn. Reson. 2008;10:39.
    1. Redheuil A., Yu W.-C., Mousseaux E., Harouni A.A., Kachenoura N., Wu C.O., Bluemke D., Lima J.A.C. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J. Am. Coll. Cardiol. 2011;58:1262–1270.
    1. Redheuil A., Yu W.-C., Wu C.O., Mousseaux E., de Cesare A., Yan R., Kachenoura N., Bluemke D., Lima J.A.C. Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension. 2010;55:319–326.
    1. Borlaug B.A., Kass D.A. Ventricular–vascular interaction in heart failure. Heart Fail. Clin. 2008;4:23–36.
    1. Chemla D., Hébert J.L., Coirault C., Zamani K., Suard I., Colin P., Lecarpentier Y. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am. J. Phys. 1998;274:H500–H505.
    1. Puntmann V.O., Nagel E., Hughes A.D., Gebker R., Gaddum N., Chowienczyk P., Jahnke C., Mirelis J., Schnackenburg B., Paetsch I., Fleck E. Gender-specific differences in myocardial deformation and aortic stiffness at rest and Dobutamine stress. Hypertension. 2012;59:712–718.
    1. Piechnik S.K., Ferreira V.M., Lewandowski A.J., Ntusi N.A., Banerjee R., Holloway C., Hofman M.B., Sado D.M., Maestrini V., White S.K., Lazdam M., Karamitsos T., Moon J.C., Neubauer S., Leeson P., Robson M.D. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J. Cardiovasc. Magn. Reson. 2013;15:13.
    1. Ugander M., Oki A.J., Hsu L.Y., Kellman P., Greiser A., Aletras A.H., Sibley C.T., Chen M.Y., Bandettini W.P., Arai A.E. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur. Heart J. 2012;33:1268–1278.
    1. Liu C.-Y., Liu Y.-C., Wu C., Armstrong A., Volpe G.J., van der Geest R.J., Liu Y., Hundley W.G., Gomes A.S., Liu S., Nacif M., Bluemke D.A., Lima J.A.C. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping. J. Am. Coll. Cardiol. 2013;62:1280–1287.
    1. Hinojar R., Varma N., Child N., Goodman B., Jabbour A., Yu C.-Y., Gebker R., Doltra A., Kelle S., Khan S., Rogers T., Arroyo Ucar E., Cummins C., Carr-White G., Nagel E., Puntmann V.O. T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging. 2015;8
    1. Dorn G.W. The fuzzy logic of physiological cardiac hypertrophy. Hypertension. 2007;49:962–970.
    1. Turkbey E.B., Redheuil A., J-YC Backlund, Small A.C., Cleary P.A., Lachin J.M., JAC Lima, Bluemke D.A., Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group Aortic distensibility in type 1 diabetes. Diabetes Care. 2013;36:2380–2387.
    1. Karp G., Wolak A., Baumfeld Y., Bar-Am N., Novack V., Wolak T., Fuchs L., Shalev A., Shelef I., Abu-Shakra M. Assessment of aortic stiffness among patients with systemic lupus erythematosus and rheumatoid arthritis by magnetic resonance imaging. Int. J. Card. Imaging. 2016;32:935–944.
    1. Dickhout J.G., Carlisle R.E., Austin R.C. Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ. Res. 2011;108:629–642.
    1. Franssen C.F.M., Navis G. Nat. Rev. Nephrol. 2013;9:190–192.
    1. Borlaug B.A., Nishimura R.A., Sorajja P., Lam C.S.P., Redfield M.M. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ. Heart Fail. 2010;3:588–595.
    1. Puntmann V.O., Peker E., Chandrashekhar Y., Nagel E. T1 mapping in characterizing myocardial disease. Circ. Res. 2016;119:277–299.
    1. Higgins D.M., Moon J.C. Review of T1 mapping methods: comparative effectiveness including reproducibility issues. Curr. Cardiovasc. Imaging Rep. 2014;7:9252.
    1. Cameron D., Vassiliou V.S., Higgins D.M., Gatehouse P.D. Towards accurate and precise T 1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. MAGMA. 2017;52:1–21.

Source: PubMed

3
S'abonner