Tafenoquine and its derivatives as inhibitors for the severe acute respiratory syndrome coronavirus 2

Yeh Chen, Wen-Hao Yang, Hsiao-Fan Chen, Li-Min Huang, Jing-Yan Gao, Cheng-Wen Lin, Yu-Chuan Wang, Chia-Shin Yang, Yi-Liang Liu, Mei-Hui Hou, Chia-Ling Tsai, Yi-Zhen Chou, Bao-Yue Huang, Chian-Fang Hung, Yu-Lin Hung, Wei-Jan Wang, Wen-Chi Su, Vathan Kumar, Yu-Chieh Wu, Shih-Wei Chao, Chih-Shiang Chang, Jin-Shing Chen, Yu-Ping Chiang, Der-Yang Cho, Long-Bin Jeng, Chang-Hai Tsai, Mien-Chie Hung, Yeh Chen, Wen-Hao Yang, Hsiao-Fan Chen, Li-Min Huang, Jing-Yan Gao, Cheng-Wen Lin, Yu-Chuan Wang, Chia-Shin Yang, Yi-Liang Liu, Mei-Hui Hou, Chia-Ling Tsai, Yi-Zhen Chou, Bao-Yue Huang, Chian-Fang Hung, Yu-Lin Hung, Wei-Jan Wang, Wen-Chi Su, Vathan Kumar, Yu-Chieh Wu, Shih-Wei Chao, Chih-Shiang Chang, Jin-Shing Chen, Yu-Ping Chiang, Der-Yang Cho, Long-Bin Jeng, Chang-Hai Tsai, Mien-Chie Hung

Abstract

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.

Keywords: COVID-19; SARS-CoV-2; TMPRSS2; drug action; drug design; drug discovery; main protease; tafenoquine; viral protease; virus entry.

Conflict of interest statement

Conflict of interest The authors declare that there is no conflict of interests with the contents of this article.

Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
TFQ efficiently inhibits SARS-CoV-2 Mpro.A, screening of a library of FDA-approved compounds against SARS-CoV-2 Mpro by FRET assay. Each compound (60 μM) was pre-incubated with 4 μM of SARS-CoV-2 Mpro for 30 min at room temperature. Fluorescent protein substrate (20 μM) was then added to initiate the reaction. The relative enzymatic activity of SARS-CoV-2 Mpro is shown. B, dose–response curve of TFQ against SARS-CoV-2 Mpro with an IC50 value of 31.8 μM. Data are shown as mean ± standard deviation, n = 3 technical replicates. C, melting curves of SARS-CoV-2 Mpro at various concentrations of TFQ (0, 15, 45, 60, 90 μM). D, melting curves of SARS-CoV-2 Mpro at various concentration of HCQ (0, 15, 45, 60, 90 μM). FRET, fluorescence resonance energy transfer; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TFQ, tafenoquine.
Figure 2
Figure 2
Inhibition of enzymatic activity of SARS-CoV-2 Mproby TFQ.A, analytical ultracentrifugation (AUC) experiment of SARS-CoV-2 Mpro in the presence of different concentrations of TFQ (0, 50, 60, 70, 80, 90 μM). B, comparison of the enzymatic activity of SARS-CoV-2 Mpro with the far-UV CD signals (molar ellipticity at 222 nm) by increasing dose of TFQ. The results are shown as a solid line (CD signals) or dashed line (enzyme activity measured by FRET) with error bars from at least two replicates. C, limited proteolysis of SARS-CoV-2 Mpro by trypsin in the presence of different concentrations of TFQ (left) or HCQ (right) (0, 30, 60, 90 μM). CD, circular dichroism; FRET, fluorescence resonance energy transfer; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TFQ, tafenoquine.
Figure 3
Figure 3
Structural analysis of TFQ interaction with SARS-CoV-2 Mpro.A, surface presentation of potential substrate-binding pocket of SARS-CoV-2 Mpro with TFQ. TFQ (green stick) interact with SARS-CoV-2 Mpro by forming hydrogen bonds (black dash line) on several residues (yellow stick) on SARS-CoV-2 Mpro. The S2 and S1 subsites of SARS-CoV-2 Mpro are indicated. B, detailed hydrophobic interactions between TFQ (green) and the active-site residues of SARS-CoV-2 Mpro (yellow). C, structural comparison of ligand-free form (orange) and TFQ bound form (green) of SARS-CoV-2 Mpro. The largest structural changes induced by TFQ binding occurring at the loop region containing residues 139 to 144 and indicated by black arrows. D, the detailed view of the altered loop region (residues 139–144) in (C). The potential steric clash between TFQ and the residue N142 from ligand-free form of SARS-CoV-2 Mpro is highlighted by a dashed black circle. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TFQ, tafenoquine
Figure 4
Figure 4
TFQ represses SARS-CoV-2 infection in Vero E6 cells.A, a schematic illustrating two methods of treatments of TFQ in SARS-CoV-2 infected Vero E6 cells. In the posttreatment group, cells were treated with TFQ after viral infection. In the full-time treatment group, cells were pretreated with TFQ for 1 h prior to viral infection plus the posttreatment of TFQ after viral infection. B, the virus-infected Vero E6 cells were treated with TFQ (2.5 and 5 μM) or DMSO. The cell supernatant was collected on day 1, day 2, and day 3 and then subjected to qRT-PCR to determine the viral titer (n = 3). Data are shown as mean ± standard deviation. C, the inhibition rate of virus infection on day 2 in Vero E6 cells treated with 2.5 or 5 μM TFQ with full-time or posttreatment (n = 3). Data are shown as mean ± standard deviation. D, 10 × phase-contrast images of virus-infected Vero E6 treated with DMSO or TFQ (2.5 μM and 5 μM) with TFQ full-time or posttreatment at 3 days post infection. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TFQ, tafenoquine.
Figure 5
Figure 5
TFQ derivative Compound 7 exhibits a lower toxicity than that of TFQ.A, MTT assay of VeroE6 cells (left panel) and Calu3 cells (right panel) treated for 24 h with indicated concentrations of compound 3, 7, 8, 13, and 14. Each data point represents the average of values obtained in three independent experiments. Error bars represent the standard deviation of the means. B, the CC50 values of compounds 3, 7, 8, 13, and 14 were determined by using GraphPad PRISM software and expressed as mean ± SD. C, VeroE6 and Calu3 cells were treated with varying concentrations of TFQ or compound 7, and cell viability was assessed by MTT assay. Error bars represent the standard deviation of the means. D, the CC50 values of TFQ and compound 7 were determined by using GraphPad PRISM software and expressed as mean ± SD. E, the chemical structure of TFQ and compound 7 was presented. TFQ, tafenoquine.
Figure 6
Figure 6
Compound 7 suppressed SARS-CoV-2 pseudovirus infection by TMPRSS2-dependent manner.A, immunoblot analysis of whole-cell lysates from vector control or TMPRSS2-expressing VeroE6 and Calu3 cells. B, Calu3 and VeroE6 cells with and without TMPRSS2 expression were pretreated with HCQ, TFQ or compound 7 and then infected with SARS-CoV-2 Spike pseudovirus. After 24 h of infection, the infection efficiency rate was measured by luciferase activities. Error bars represent the standard deviation of the means. C, the EC50 of TFQ and compound 7 was determined by GraphPad PRISM software, expressed as mean ± SD. D, the selectivity index (SI) of TFQ and compound 7 was measured by mean CC50/mean EC50. E and F, VeroE6 cells with TMPRSS2 expression were pretreated with indicated concentration of TFQ or compound 7 and then infected with SARS-CoV-2 Spike Wild-type, B1.1.7 B.1.351, B1.617, or B1.618 pseudovirus. After 24 h of the infection, the infection efficiency rate was measured according to luciferase activities. Error bars represent the standard deviation of the means. G and H, the EC50 (mean ± SD) and SI value of TFQ and compound 7 were determined. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TFQ, tafenoquine. TMPRSS2, TFQ inhibited human transmembrane protease serine 2.

References

    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273.
    1. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., Yuan M.L., Zhang Y.L., Dai F.H., Liu Y., Wang Q.M., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269.
    1. Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020;20:533–534.
    1. World Health Organization . Coronavirus Disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update. World Health Organization; Geneva: 2021.
    1. Pawlowski C., Lenehan P., Puranik A., Agarwal V., Venkatakrishnan A.J., Niesen M.J.M., O'Horo J.C., Virk A., Swift M.D., Badley A.D., Halamka J., Soundararajan V. FDA-authorized COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system. Med. (N. Y.) 2021;2:979–992.e8.
    1. Dagan N., Barda N., Kepten E., Miron O., Perchik S., Katz M.A., Hernán M.A., Lipsitch M., Reis B., Balicer R.D. BNT162b2 mRNA covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 2021;384:1412–1423.
    1. Levine-Tiefenbrun M., Yelin I., Katz R., Herzel E., Golan Z., Schreiber L., Wolf T., Nadler V., Ben-Tov A., Kuint J., Gazit S., Patalon T., Chodick G., Kishony R. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 2021;27:790–792.
    1. Mathieu E., Ritchie H., Ortiz-Ospina E., Roser M., Hasell J., Appel C., Giattino C., Rodés-Guirao L. A global database of COVID-19 vaccinations. Nat. Hum. Behav. 2021;5:947–953.
    1. Katz I.T., Weintraub R., Bekker L.G., Brandt A.M. From vaccine nationalism to vaccine equity - finding a path forward. N. Engl. J. Med. 2021;384:1281–1283.
    1. Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E.E., Bhattacharya T., Foley B., Hastie K.M., Parker M.D., Partridge D.G., Evans C.M., Freeman T.M., et al. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812–827.e19.
    1. Reynolds C.J., Pade C., Gibbons J.M., Butler D.K., Otter A.D., Menacho K., Fontana M., Smit A., Sackville-West J.E., Cutino-Moguel T., Maini M.K., Chain B., Noursadeghi M., UK COVIDsortium Immune Correlates Network. Brooks T., et al. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science. 2021;30
    1. Zahradník J., Marciano S., Shemesh M., Zoler E., Chiaravalli J., Meyer B., Rudich Y., Dym O., Elad N., Schreiber G. SARS-CoV-2 RBD in vitro evolution follows contagious mutation spread, yet generates an able infection inhibitor. bioRxiv. 2021 doi: 10.1101/2021.01.06.425392. [preprint]
    1. Wang Z., Schmidt F., Weisblum Y., Muecksch F., Barnes C.O., Finkin S., Schaefer-Babajew D., Cipolla M., Gaebler C., Lieberman J.A., Oliveira T.Y., Yang Z., Abernathy M.E., Huey-Tubman K.E., Hurley A., et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592:616–622.
    1. Collier D.A., De Marco A., Ferreira I.A.T.M., Meng B., Datir R.P., Walls A.C., Kemp S.A., Bassi J., Pinto D., Silacci-Fregni C., Bianchi S., Tortorici M.A., Bowen J., Culap K., Jaconi S., et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021;593:136–141.
    1. Vaidyanathan G. Coronavirus variants are spreading in India - what scientists know so far. Nature. 2021;593:321–322.
    1. Kumar V., Singh J., Hasnain S.E., Sundar D. Possible link between higher transmissibility of B1617 and B117 variants of SARS-CoV-2 and increased structural stability of its spike protein and hACE2 affinity. Int J. Mol. Sci. 2021;22:9131.
    1. Cherian S., Potdar V., Jadhav S., Yadav P., Gupta N., Das M., Das S., Agarwal A., Singh S., Abraham P., Panda S., Mande S., Swarup R., Bhargava B., Bhushan R., et al. Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. bioRxiv. 2021 doi: 10.1101/2021.04.22.440932. [preprint]
    1. Tada T., Zhou H., Dcosta B.M., Samanovic M.I., Mulligan M.J., Landau N.R. The spike proteins of SARS-CoV-2 B.1.617 and B.1.618 variants identified in india provide partial resistance to vaccine-elicited and therapeutic monoclonal antibodies. bioRxiv. 2021 doi: 10.1101/2021.05.14.444076. [preprint]
    1. Chi X., Yan R., Zhang J., Zhang G., Zhang Y., Hao M., Zhang Z., Fan P., Dong Y., Yang Y., Chen Z., Guo Y., Zhang J., Li Y., Song X., et al. A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. Science. 2020;369:650–655.
    1. Muik A., Wallisch A.K., Sänger B., Swanson K.A., Mühl J., Chen W., Cai H., Maurus D., Sarkar R., Türeci Ö., Dormitzer P.R., Şahin U. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science. 2021;371:1152–1153.
    1. Wang P., Nair M.S., Liu L., Iketani S., Luo Y., Guo Y., Wang M., Yu J., Zhang B., Kwong P.D., Graham B.S., Mascola J.R., Chang J.Y., Yin M.T., Sobieszczyk M., et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593:130–135.
    1. Spinner C.D., Gottlieb R.L., Criner G.J., Arribas López J.R., Cattelan A.M., Soriano Viladomiu A., Ogbuagu O., Malhotra P., Mullane K.M., Castagna A., Chai L.Y.A., Roestenberg M., Tsang O.T.Y., Bernasconi E., Le Turnier P., et al. Effect of Remdesivir versus standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA. 2020;324:1048–1057.
    1. Wang Y., Zhang D., Du G., Du R., Zhao J., Jin Y., Fu S., Gao L., Cheng Z., Lu Q., Hu Y., Luo G., Wang K., Lu Y., Li H., et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395:1569–1578.
    1. Group R.C., Horby P., Lim W.S., Emberson J.R., Mafham M., Bell J.L., Linsell L., Staplin N., Brightling C., Ustianowski A., Elmahi E., Prudon B., Green C., Felton T., Chadwick D., et al. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 2021;384:693–704.
    1. Jirjees F., Saad A.K., Al Hano Z., Hatahet T., Al Obaidi H., Dallal Bashi Y.H. COVID-19 treatment guidelines: Do they really reflect best medical practices to manage the pandemic? Infect. Dis. Rep. 2021;13:259–284.
    1. Taylor P.C., Adams A.C., Hufford M.M., de la Torre I., Winthrop K., Gottlieb R.L. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 2021;221:382–393.
    1. WHO Solidarity Trial Consortium. Pan H., Peto R., Henao-Restrepo A.M., Preziosi M.P., Sathiyamoorthy V., Abdool Karim Q., Alejandria M.M., Hernández García C., Kieny M.P., Malekzadeh R., Murthy S., Reddy K.S., Roses Periago M., Abi Hanna P., et al. Repurposed antiviral drugs for Covid-19 - interim WHO solidarity trial results. N. Engl. J. Med. 2021;384:497–511.
    1. Lee T.C., McDonald E.G., Butler-Laporte G., Harrison L.B., Cheng M.P., Brophy J.M. Remdesivir and systemic corticosteroids for the treatment of COVID-19: A Bayesian re-analysis. Int. J. Infect. Dis. 2021;104:671–676.
    1. Naqvi A.A.T., Fatima K., Mohammad T., Fatima U., Singh I.K., Singh A., Atif S.M., Hariprasad G., Hasan G.M., Hassan M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165878.
    1. Pillaiyar T., Manickam M., Namasivayam V., Hayashi Y., Jung S.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem. 2016;59:6595–6628.
    1. Anand K., Ziebuhr J., Wadhwani P., Mesters J.R., Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science. 2003;300:1763–1767.
    1. Hegyi A., Ziebuhr J. Conservation of substrate specificities among coronavirus main proteases. J. Gen. Virol. 2002;83:595–599.
    1. Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O'Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Hüttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–468.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8.
    1. Wang Y.C., Yang W.H., Yang C.S., Hou M.H., Tsai C.L., Chou Y.Z., Hung M.C., Chen Y. Structural basis of SARS-CoV-2 main protease inhibition by a broad-spectrum anti-coronaviral drug. Am. J. Cancer Res. 2020;10:2535–2545.
    1. Campo B., Vandal O., Wesche D.L., Burrows J.N. Killing the hypnozoite--drug discovery approaches to prevent relapse in Plasmodium vivax. Pathog. Glob. Health. 2015;109:107–122.
    1. Ebstie Y.A., Abay S.M., Tadesse W.T., Ejigu D.A. Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: The evidence to date. Drug Des. Devel. Ther. 2016;10:2387–2399.
    1. Frampton J.E. Tafenoquine: First global approval. Drugs. 2018;78:1517–1523.
    1. Hounkpatin A.B., Kreidenweiss A., Held J. Clinical utility of tafenoquine in the prevention of relapse of Plasmodium vivax malaria: A review on the mode of action and emerging trial data. Infect. Drug Resist. 2019;12:553–570.
    1. Liu J., Cao R., Xu M., Wang X., Zhang H., Hu H., Li Y., Hu Z., Zhong W., Wang M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16.
    1. Bansal P., Goyal A., Cusick A., Lahan S., Dhaliwal H.S., Bhyan P., Bhattad P.B., Aslam F., Ranka S., Dalia T., Chhabra L., Sanghavi D., Sonani B., Davis J.M. Hydroxychloroquine: A comprehensive review and its controversial role in coronavirus disease 2019. Ann. Med. 2021;53:117–134.
    1. Mitjà O., Corbacho-Monné M., Ubals M., Alemany A., Suñer C., Tebé C., Tobias A., Peñafiel J., Ballana E., Pérez C.A., Admella P., Riera-Martí N., Laporte P., Mitjà J., Clua M., et al. A cluster-randomized trial of hydroxychloroquine for prevention of Covid-19. N. Engl. J. Med. 2021;384:417–427.
    1. Ayerbe L., Risco-Risco C., Núñez-Gil I., Perez-Piñar M., Ayis S. Hydroxychloroquine treatment does not reduce COVID-19 mortality; underdosing to the wrong patients? Lancet Rheumatol. 2021;3
    1. Pantoliano M.W., Petrella E.C., Kwasnoski J.D., Lobanov V.S., Myslik J., Graf E., Carver T., Asel E., Springer B.A., Lane P., Salemme F.R. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 2001;6:429–440.
    1. Seetoh W.G., Abell C. Disrupting the constitutive, homodimeric protein-protein interface in CK2β using a biophysical fragment-based approach. J. Am. Chem. Soc. 2016;138:14303–14311.
    1. Woolger N., Bournazos A., Sophocleous R.A., Evesson F.J., Lek A., Driemer B., Sutton R.B., Cooper S.T. Limited proteolysis as a tool to probe the tertiary conformation of dysferlin and structural consequences of patient missense variant L344P. J. Biol. Chem. 2017;292:18577–18591.
    1. Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., Duan Y., Yu J., Wang L., Yang K., Liu F., et al. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–293.
    1. Hoffmann M., Hofmann-Winkler H., Krüger N., Kempf A., Nehlmeier I., Graichen L., Arora P., Sidarovich A., Moldenhauer A.S., Winkler M.S., Schulz S., Jäck H.M., Stankov M.V., Behrens G.M.N., Pöhlmann S. SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell Rep. 2021;36:109415.
    1. Park W.B., Kwon N.J., Choi S.J., Kang C.K., Choe P.G., Kim J.Y., Yun J., Lee G.W., Seong M.W., Kim N.J., Seo J.S., Oh M.D. Virus isolation from the first patient with SARS-CoV-2 in Korea. J. Korean Med. Sci. 2020;35
    1. Vicenzi E., Canducci F., Pinna D., Mancini N., Carletti S., Lazzarin A., Bordignon C., Poli G., Clementi M. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerg. Infect. Dis. 2004;10:413–418.
    1. Yan H., Xiao G., Zhang J., Hu Y., Yuan F., Cole D.K., Zheng C., Gao G.F. SARS coronavirus induces apoptosis in vero E6 cells. J. Med. Virol. 2004;73:323–331.
    1. Harcourt J., Tamin A., Lu X., Kamili S., Sakthivel S.K., Murray J., Queen K., Tao Y., Paden C.R., Zhang J., Li Y., Uehara A., Wang H., Goldsmith C., Bullock H.A., et al. Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States. Emerg. Infect. Dis. 2020;26:1266–1273.
    1. Ragia G., Manolopoulos V.G. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: A promising approach for uncovering early COVID-19 drug therapies. Eur. J. Clin. Pharmacol. 2020;76:1623–1630.
    1. Xiu S., Dick A., Ju H., Mirzaie S., Abdi F., Cocklin S., Zhan P., Liu X. Inhibitors of SARS-CoV-2 entry: Current and future opportunities. J. Med. Chem. 2020;63:12256–12274.
    1. Mahmoud I.S., Jarrar Y.B., Alshaer W., Ismail S. SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention. Biochimie. 2020;175:93–98.
    1. Hoffmann M., Mösbauer K., Hofmann-Winkler H., Kaul A., Kleine-Weber H., Krüger N., Gassen N.C., Müller M.A., Drosten C., Pöhlmann S. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020;585:588–590.
    1. Yang H., Yang M., Ding Y., Liu Y., Lou Z., Zhou Z., Sun L., Mo L., Ye S., Pang H., Gao G.F., Anand K., Bartlam M., Hilgenfeld R., Rao Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. U. S. A. 2003;100:13190–13195.
    1. Verschueren K.H., Pumpor K., Anemüller S., Chen S., Mesters J.R., Hilgenfeld R. A structural view of the inactivation of the SARS coronavirus main proteinase by benzotriazole esters. Chem. Biol. 2008;15:597–606.
    1. Fornasier E., Macchia M.L., Giachin G., Sosic A., Pavan M., Sturlese M., Salata C., Moro S., Gatto B., Bellanda M., Battistutta R. A novel conformational state for SARS-CoV-2 main protease. bioRxiv. 2021 doi: 10.1101/2021.03.04.433882. [preprint]
    1. Lockbaum G.J., Reyes A.C., Lee J.M., Tilvawala R., Nalivaika E.A., Ali A., Kurt Yilmaz N., Thompson P.R., Schiffer C.A. Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188. Viruses. 2021;13:174.
    1. Günther S., Reinke P.Y.A., Fernández-García Y., Lieske J., Lane T.J., Ginn H.M., Koua F.H.M., Ehrt C., Ewert W., Oberthuer D., Yefanov O., Meier S., Lorenzen K., Krichel B., Kopicki J.D., et al. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science. 2021;372:642–646.
    1. Su H., Yao S., Zhao W., Li M., Liu J., Shang W., Xie H., Ke C., Gao M., Yu K., Liu H., Shen J., Tang W., Zhang L., Zuo J., et al. Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. bioRxiv. 2020 doi: 10.1101/2020.04.13.038687. [preprint]
    1. Aljoundi A., Bjij I., El Rashedy A., Soliman M.E.S. Covalent versus non-covalent enzyme inhibition: Which route should we take? A justification of the good and bad from molecular modelling perspective. Protein J. 2020;39:97–105.
    1. Böttger R., Hoffmann R., Knappe D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One. 2017;12
    1. Haston J.C., Hwang J., Tan K.R. Guidance for using tafenoquine for prevention and antirelapse therapy for malaria - United States, 2019. MMWR Morb. Mortal. Wkly Rep. 2019;68:1062–1068.
    1. Hossain M.K., Hassanzadeganroudsari M., Feehan J., Apostolopoulos V. The emergence of new strains of SARS-CoV-2. What does it mean for COVID-19 vaccines? Expert Rev. Vaccines. 2021;20:635–638.
    1. Singh J., Singh J., Rahman S.A., Ehtesham N.Z., Hira S., Hasnain S.E. SARS-CoV-2 variants of concern are emerging in India. Nat. Med. 2021;27:1131–1133.
    1. Lo M.C., Aulabaugh A., Jin G., Cowling R., Bard J., Malamas M., Ellestad G. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem. 2004;332:153–159.
    1. Schuck P., Perugini M.A., Gonzales N.R., Howlett G.J., Schubert D. Size-distribution analysis of proteins by analytical ultracentrifugation: Strategies and application to model systems. Biophys. J. 2002;82:1096–1111.

Source: PubMed

3
S'abonner