Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan

John P Campbell, James E Turner, John P Campbell, James E Turner

Abstract

Epidemiological evidence indicates that regular physical activity and/or frequent structured exercise reduces the incidence of many chronic diseases in older age, including communicable diseases such as viral and bacterial infections, as well as non-communicable diseases such as cancer and chronic inflammatory disorders. Despite the apparent health benefits achieved by leading an active lifestyle, which imply that regular physical activity and frequent exercise enhance immune competency and regulation, the effect of a single bout of exercise on immune function remains a controversial topic. Indeed, to this day, it is perceived by many that a vigorous bout of exercise can temporarily suppress immune function. In the first part of this review, we deconstruct the key pillars which lay the foundation to this theory-referred to as the "open window" hypothesis-and highlight that: (i) limited reliable evidence exists to support the claim that vigorous exercise heightens risk of opportunistic infections; (ii) purported changes to mucosal immunity, namely salivary IgA levels, after exercise do not signpost a period of immune suppression; and (iii) the dramatic reductions to lymphocyte numbers and function 1-2 h after exercise reflects a transient and time-dependent redistribution of immune cells to peripheral tissues, resulting in a heightened state of immune surveillance and immune regulation, as opposed to immune suppression. In the second part of this review, we provide evidence that frequent exercise enhances-rather than suppresses-immune competency, and highlight key findings from human vaccination studies which show heightened responses to bacterial and viral antigens following bouts of exercise. Finally, in the third part of this review, we highlight that regular physical activity and frequent exercise might limit or delay aging of the immune system, providing further evidence that exercise is beneficial for immunological health. In summary, the over-arching aim of this review is to rebalance opinion over the perceived relationships between exercise and immune function. We emphasize that it is a misconception to label any form of acute exercise as immunosuppressive, and, instead, exercise most likely improves immune competency across the lifespan.

Keywords: ageing; exercise; immune competency; immunosenescence; infection susceptibility; open window hypothesis; physical activity; upper respiratory tract infections.

References

    1. Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol (2017) 32(5):541–56.10.1097/HCO.0000000000000437
    1. Pape K, Ryttergaard L, Rotevatn TA, Nielsen BJ, Torp-Pedersen C, Overgaard C, et al. Leisure-time physical activity and the risk of suspected bacterial infections. Med Sci Sports Exerc (2016) 48(9):1737–44.10.1249/MSS.0000000000000953
    1. Kostka T, Berthouze SE, Lacour J, Bonnefoy M. The symptomatology of upper respiratory tract infections and exercise in elderly people. Med Sci Sports Exerc (2000) 32(1):46–51.10.1097/00005768-200001000-00008
    1. Leveille SG, Gray S, LaCroix AZ, Ferrucci L, Black DJ, Guralnik JM. Physical inactivity and smoking increase risk for serious infections in older women. J Am Geriatr Soc (2000) 48(12):1582–8.10.1111/j.1532-5415.2000.tb03867.x
    1. Romaniszyn D, Pobiega M, Wojkowska-Mach J, Chmielarczyk A, Gryglewska B, Adamski P, et al. The general status of patients and limited physical activity as risk factors of methicillin-resistant Staphylococcus aureus occurrence in long-term care facilities residents in Krakow, Poland. BMC Infect Dis (2014) 14:271.10.1186/1471-2334-14-271
    1. Baik I, Curhan GC, Rimm EB, Bendich A, Willett WC, Fawzi WW. A prospective study of age and lifestyle factors in relation to community-acquired pneumonia in US men and women. Arch Intern Med (2000) 160(20):3082–8.10.1001/archinte.160.20.3082
    1. Walsh NP, Gleeson M, Pyne DB, Nieman DC, Dhabhar FS, Shephard RJ, et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev (2011) 17:64–103.
    1. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev (2011) 17:6–63.
    1. Pascoe AR, Fiatarone Singh MA, Edwards KM. The effects of exercise on vaccination responses: a review of chronic and acute exercise interventions in humans. Brain Behav Immun (2014) 39:33–41.10.1016/j.bbi.2013.10.003
    1. Turner JE. Is immunosenescence influenced by our lifetime “dose” of exercise? Biogerontology (2016) 17(3):581–602.10.1007/s10522-016-9642-z
    1. Simpson RJ, Guy K. Coupling aging immunity with a sedentary lifestyle: has the damage already been done? – a mini-review. Gerontology (2010) 56(5):449–58.10.1159/000270905
    1. Simpson RJ. Aging, persistent viral infections, and immunosenescence: can exercise “make space”? Exerc Sport Sci Rev (2011) 39(1):23–33.10.1097/JES.0b013e318201f39d
    1. Turner JE, Brum PC. Does regular exercise counter T cell immunosenescence reducing the risk of developing cancer and promoting successful treatment of malignancies? Oxid Med Cell Longev (2017) 2017:4234765.10.1155/2017/4234765
    1. Mackinnon LT. Advances in Exercise Immunology. Champaign, IL: Human Kinetics; (1999). xii, 363 p.
    1. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol (1985) (2017) 122(5):1077–87.10.1152/japplphysiol.00622.2016
    1. Cowles WN. Fatigue as a contributory cause of pneumonias. Boston Med Surg J (1918) 179:555.10.1056/NEJM191810311791801
    1. Peters EM, Bateman ED. Ultramarathon running and upper respiratory tract infections. An epidemiological survey. S Afr Med J (1983) 64(15):582–4.
    1. Nieman DC, Johanssen LM, Lee JW, Arabatzis K. Infectious episodes in runners before and after the Los Angeles Marathon. J Sports Med Phys Fitness (1990) 30(3):316–28.
    1. Nieman DC, Johanssen LM, Lee JW. Infectious episodes in runners before and after a roadrace. J Sports Med Phys Fitness (1989) 29(3):289–96.
    1. Spence L, Brown WJ, Pyne DB, Nissen MD, Sloots TP, McCormack JG, et al. Incidence, etiology, and symptomatology of upper respiratory illness in elite athletes. Med Sci Sports Exerc (2007) 39(4):577–86.10.1249/mss.0b013e31802e851a
    1. Gleeson M. Immune function in sport and exercise. J Appl Physiol (1985) (2007) 103(2):693–9.10.1152/japplphysiol.00008.2007
    1. Cox AJ, Gleeson M, Pyne DB, Callister R, Hopkins WG, Fricker PA. Clinical and laboratory evaluation of upper respiratory symptoms in elite athletes. Clin J Sport Med (2008) 18(5):438–45.10.1097/JSM.0b013e318181e501
    1. Makela MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimaki M, et al. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol (1998) 36(2):539–42.
    1. Nieman DC. Exercise, infection, and immunity. Int J Sports Med (1994) 15(Suppl 3):S131–41.10.1055/s-2007-1021128
    1. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, et al. Prevention, diagnosis and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur J Sport Sci (2013) 13(1):1–24.10.1080/17461391.2012.730061
    1. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc (2013) 45(1):186–205.10.1249/MSS.0b013e318279a10a
    1. Edwards JP, Walsh NP, Diment PC, Roberts R. Anxiety and perceived psychological stress play an important role in the immune response after exercise. Exerc Immunol Rev (2018) 24:26–34.
    1. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol (2005) 5(3):243–51.10.1038/nri1571
    1. Kohut ML, Lee W, Martin A, Arnston B, Russell DW, Ekkekakis P, et al. The exercise-induced enhancement of influenza immunity is mediated in part by improvements in psychosocial factors in older adults. Brain Behav Immun (2005) 19(4):357–66.10.1016/j.bbi.2004.12.002
    1. Bermon S, Castell LM, Calder PC, Bishop NC, Blomstrand E, Mooren FC, et al. Consensus statement immunonutrition and exercise. Exerc Immunol Rev (2017) 23:8–50.
    1. Choudhry AJ, Al-Mudaimegh KS, Turkistani AM, Al-Hamdan NA. Hajj-associated acute respiratory infection among hajjis from Riyadh. East Mediterr Health J (2006) 12(3–4):300–9.
    1. Svendsen IS, Taylor IM, Tonnessen E, Bahr R, Gleeson M. Training-related and competition-related risk factors for respiratory tract and gastrointestinal infections in elite cross-country skiers. Br J Sports Med (2016) 50(13):809–15.10.1136/bjsports-2015-095398
    1. Gleeson M. Immunological aspects of sport nutrition. Immunol Cell Biol (2016) 94(2):117–23.10.1038/icb.2015.109
    1. Schwellnus MP, Derman WE, Jordaan E, Page T, Lambert MI, Readhead C, et al. Elite athletes travelling to international destinations >5 time zone differences from their home country have a 2-3-fold increased risk of illness. Br J Sports Med (2012) 46(11):816–21.10.1136/bjsports-2012-091395
    1. Fondell E, Lagerros YT, Sundberg CJ, Lekander M, Balter O, Rothman KJ, et al. Physical activity, stress, and self-reported upper respiratory tract infection. Med Sci Sports Exerc (2011) 43(2):272–9.10.1249/MSS.0b013e3181edf108
    1. Martensson S, Nordebo K, Malm C. High training volumes are associated with a low number of self-reported sick days in elite endurance athletes. J Sports Sci Med (2014) 13(4):929–33.
    1. Hellard P, Avalos M, Guimaraes F, Toussaint JF, Pyne DB. Training-related risk of common illnesses in elite swimmers over a 4-yr period. Med Sci Sports Exerc (2015) 47(4):698–707.10.1249/MSS.0000000000000461
    1. Hoffman MD, Krishnan E. Health and exercise-related medical issues among 1,212 ultramarathon runners: baseline findings from the Ultrarunners Longitudinal TRAcking (ULTRA) study. PLoS One (2014) 9(1):e83867.10.1371/journal.pone.0083867
    1. Hoffman MD, Fogard K. Demographic characteristics of 161-km ultramarathon runners. Res Sports Med (2012) 20(1):59–69.10.1080/15438627.2012.634707
    1. Malm C. Susceptibility to infections in elite athletes: the S-curve. Scand J Med Sci Sports (2006) 16(1):4–6.10.1111/j.1600-0838.2005.00499.x
    1. Derman W, Schwellnus M, Jordaan E. Clinical characteristics of 385 illnesses of athletes with impairment reported on the WEB-IISS system during the London 2012 Paralympic Games. PM R (2014) 6(8 Suppl):S23–30.10.1016/j.pmrj.2014.05.016
    1. Bonini M, Gramiccioni C, Fioretti D, Ruckert B, Rinaldi M, Akdis C, et al. Asthma, allergy and the Olympics: a 12-year survey in elite athletes. Curr Opin Allergy Clin Immunol (2015) 15(2):184–92.10.1097/ACI.0000000000000149
    1. Bramley TJ, Lerner D, Sames M. Productivity losses related to the common cold. J Occup Environ Med (2002) 44(9):822–9.10.1097/00043764-200209000-00004
    1. Fendrick AM, Monto AS, Nightengale B, Sarnes M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch Intern Med (2003) 163(4):487–94.10.1001/archinte.163.4.487
    1. Bayer C, Remschmidt C, an der Heiden M, Tolksdorf K, Herzhoff M, Kaersten S, et al. Internet-based syndromic monitoring of acute respiratory illness in the general population of Germany, weeks 35/2011 to 34/2012. Euro Surveill (2014) 19(4):1–11.10.2807/1560-7917.ES2014.19.4.20684
    1. Gleeson M, Pyne DB, Austin JP, Lynn Francis J, Clancy RL, McDonald WA, et al. Epstein-Barr virus reactivation and upper-respiratory illness in elite swimmers. Med Sci Sports Exerc (2002) 34(3):411–7.10.1097/00005768-200203000-00005
    1. Cox AJ, Gleeson M, Pyne DB, Saunders PU, Clancy RL, Fricker PA. Valtrex therapy for Epstein-Barr virus reactivation and upper respiratory symptoms in elite runners. Med Sci Sports Exerc (2004) 36(7):1104–10.10.1249/01.MSS.0000131957.40985.2B
    1. Speir E. Cytomegalovirus gene regulation by reactive oxygen species. Agents in atherosclerosis. Ann N Y Acad Sci (2000) 899:363–74.10.1111/j.1749-6632.2000.tb06200.x
    1. Docke WD, Prosch S, Fietze E, Kimel V, Zuckermann H, Klug C, et al. Cytomegalovirus reactivation and tumour necrosis factor. Lancet (1994) 343(8892):268–9.10.1016/S0140-6736(94)91116-9
    1. Prösch S, Wendt CEC, Reinke P, Priemer C, Oppert M, Krüger DH, et al. A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology (2000) 272:357–65.10.1006/viro.2000.0367
    1. He CS, Handzlik M, Muhamad A, Gleeson M. Influence of CMV/EBV serostatus on respiratory infection incidence during 4 months of winter training in a student cohort of endurance athletes. Eur J Appl Physiol (2013) 113(10):2613–9.10.1007/s00421-013-2704-x
    1. Bishop NC, Gleeson M. Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci (Landmark Ed) (2009) 14:4444–56.10.2741/3540
    1. Tomasi TB, Trudeau FB, Czerwinski D, Erredge S. Immune parameters in athletes before and after strenuous exercise. J Clin Immunol (1982) 2(3):173–8.10.1007/BF00915219
    1. Mackinnon LT, Chick TW, van As A, Tomasi TB. Decreased secretory immunoglobulins following intense endurance exercise. Sports Train Med Rehabil (1989) 1:209–18.10.1080/15438628909511878
    1. Nieman DC, Henson DA, Fagoaga OR, Utter AC, Vinci DM, Davis JM, et al. Change in salivary IgA following a competitive marathon race. Int J Sports Med (2002) 23(1):69–75.10.1055/s-2002-19375
    1. Nehlsen-Cannarella SL, Nieman DC, Fagoaga OR, Kelln WJ, Henson DA, Shannon M, et al. Saliva immunoglobulins in elite women rowers. Eur J Appl Physiol (2000) 81(3):222–8.10.1007/s004210050034
    1. Palmer FM, Nieman DC, Henson DA, McAnulty SR, McAnulty L, Swick NS, et al. Influence of vitamin C supplementation on oxidative and salivary IgA changes following an ultramarathon. Eur J Appl Physiol (2003) 89(1):100–7.10.1007/s00421-002-0756-4
    1. Steerenberg PA, van Asperen IA, van Nieuw Amerongen A, Biewenga A, Mol D, Medema GJ. Salivary levels of immunoglobulin A in triathletes. Eur J Oral Sci (1997) 105(4):305–9.10.1111/j.1600-0722.1997.tb00245.x
    1. Nieman DC, Dumke CI, Henson DA, McAnulty SR, McAnulty LS, Lind RH, et al. Immune and oxidative changes during and following the western states endurance run. Int J Sports Med (2003) 24(7):541–7.10.1055/s-2003-42018
    1. Blannin AK, Robson PJ, Walsh NP, Clark AM, Glennon L, Gleeson M. The effect of exercising to exhaustion at different intensities on saliva immunoglobulin A, protein and electrolyte secretion. Int J Sports Med (1998) 19(8):547–52.10.1055/s-2007-971958
    1. Killer SC, Svendsen IS, Gleeson M. The influence of hydration status during prolonged endurance exercise on salivary antimicrobial proteins. Eur J Appl Physiol (2015) 115(9):1887–95.10.1007/s00421-015-3173-1
    1. Allgrove JE, Gomes E, Hough J, Gleeson M. Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men. J Sports Sci (2008) 26(6):653–61.10.1080/02640410701716790
    1. Sari-Sarraf V, Reilly T, Doran DA. Salivary IgA response to intermittent and continuous exercise. Int J Sports Med (2006) 27(11):849–55.10.1055/s-2006-923777
    1. Reid MR, Drummond PD, Mackinnon LT. The effect of moderate aerobic exercise and relaxation on secretory immunoglobulin A. Int J Sports Med (2001) 22(2):132–7.10.1055/s-2001-11347
    1. Davison G. Innate immune responses to a single session of sprint interval training. Appl Physiol Nutr Metab (2011) 36(3):395–404.10.1139/h11-033
    1. Walsh NP, Blannin AK, Clark AM, Cook L, Robson PJ, Gleeson M. The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci (1999) 17(2):129–34.10.1080/026404199366226
    1. Peters EM, Shaik J, Kleinveldt N. Upper respiratory tract infection symptoms in ultramarathon runners not related to immunoglobulin status. Clin J Sport Med (2010) 20(1):39–46.10.1097/JSM.0b013e3181cb4086
    1. Gleeson M, Bishop N, Oliveira M, McCauley T, Tauler P, Muhamad AS. Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports (2012) 22(3):410–7.10.1111/j.1600-0838.2010.01272.x
    1. Gleeson M, Bishop N, Oliveira M, Tauler P. Influence of training load on upper respiratory tract infection incidence and antigen-stimulated cytokine production. Scand J Med Sci Sports (2013) 23(4):451–7.10.1111/j.1600-0838.2011.01422.x
    1. Brandtzaeg P. Secretory immunity with special reference to the oral cavity. J Oral Microbiol (2013) 5:1–24.10.3402/jom.v5i0.20401
    1. Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev (1998) 62(1):71–109.
    1. Needleman I, Ashley P, Petrie A, Fortune F, Turner W, Jones J, et al. Oral health and impact on performance of athletes participating in the London 2012 Olympic Games: a cross-sectional study. Br J Sports Med (2013) 47(16):1054–8.10.1136/bjsports-2013-092891
    1. Heaney JL, Gleeson M, Phillips AC, Taylor IM, Drayson MT, Goodall M, et al. Salivary immunoglobulin free light chains: reference ranges and responses to exercise in young and older adults. Exerc Immunol Rev (2016) 22:28–41.
    1. Li TL, Gleeson M. The effect of single and repeated bouts of prolonged cycling and circadian variation on saliva flow rate, immunoglobulin A and alpha-amylase responses. J Sports Sci (2004) 22(11–12):1015–24.10.1080/02640410410001716733
    1. Engeland CG, Hugo FN, Hilgert JB, Nascimento GG, Junges R, Lim HJ, et al. Psychological distress and salivary secretory immunity. Brain Behav Immun (2016) 52:11–7.10.1016/j.bbi.2015.08.017
    1. Deslauriers N, Oudghiri M, Seguin J, Trudel L. The oral immune system: dynamics of salivary immunoglobulin production in the inbred mouse. Immunol Invest (1986) 15(4):339–49.10.3109/08820138609052953
    1. Booth CK, Dwyer DB, Pacque PF, Ball MJ. Measurement of immunoglobulin A in saliva by particle-enhanced nephelometric immunoassay: sample collection, limits of quantitation, precision, stability and reference range. Ann Clin Biochem (2009) 46(Pt 5):401–6.10.1258/acb.2009.008248
    1. Brandtzaeg P. Do salivary antibodies reliably reflect both mucosal and systemic immunity? Ann N Y Acad Sci (2007) 1098:288–311.10.1196/annals.1384.012
    1. Hanstock HG, Walsh NP, Edwards JP, Fortes MB, Cosby SL, Nugent A, et al. Tear fluid SIgA as a noninvasive biomarker of mucosal immunity and common cold risk. Med Sci Sports Exerc (2016) 48(3):569–77.10.1249/MSS.0000000000000801
    1. Gleeson M, Pyne DB, Elkington LJ, Hall ST, Attia JR, Oldmeadow C, et al. Developing a multi-component immune model for evaluating the risk of respiratory illness in athletes. Exerc Immunol Rev (2017) 23:52–64.
    1. Campbell JP, Riddell NE, Burns VE, Turner M, van Zanten JJ, Drayson MT, et al. Acute exercise mobilises CD8+ T lymphocytes exhibiting an effector-memory phenotype. Brain Behav Immun (2009) 23(6):767–75.10.1016/j.bbi.2009.02.011
    1. Shephard RJ. Adhesion molecules, catecholamines and leucocyte redistribution during and following exercise. Sports Med (2003) 33(4):261–84.10.2165/00007256-200333040-00002
    1. Benschop RJ, Nijkamp FP, Ballieux RE, Heijnen CJ. The effects of beta-adrenoceptor stimulation on adhesion of human natural killer cells to cultured endothelium. Br J Pharmacol (1994) 113(4):1311–6.10.1111/j.1476-5381.1994.tb17141.x
    1. Kruger K, Lechtermann A, Fobker M, Volker K, Mooren FC. Exercise-induced redistribution of T lymphocytes is regulated by adrenergic mechanisms. Brain Behav Immun (2008) 22(3):324–38.10.1016/j.bbi.2007.08.008
    1. Dimitrov S, Lange T, Born J. Selective mobilization of cytotoxic leukocytes by epinephrine. J Immunol (2010) 184(1):503–11.10.4049/jimmunol.0902189
    1. Turner JE, Spielmann G, Wadley AJ, Aldred S, Simpson RJ, Campbell JP. Exercise-induced B cell mobilisation: preliminary evidence for an influx of immature cells into the bloodstream. Physiol Behav (2016) 164(Pt A):376–82.10.1016/j.physbeh.2016.06.023
    1. Kruger K, Alack K, Ringseis R, Mink L, Pfeifer E, Schinle M, et al. Apoptosis of T-cell subsets after acute high-intensity interval exercise. Med Sci Sports Exerc (2016) 48(10):2021–9.10.1249/MSS.0000000000000979
    1. Clifford T, Wood MJ, Stocks P, Howatson G, Stevenson EJ, Hilkens CMU. T-regulatory cells exhibit a biphasic response to prolonged endurance exercise in humans. Eur J Appl Physiol (2017) 117(8):1727–37.10.1007/s00421-017-3667-0
    1. Shek PN, Sabiston BH, Buguet A, Radomski MW. Strenuous exercise and immunological changes: a multiple-time-point analysis of leukocyte subsets, CD4/CD8 ratio, immunoglobulin production and NK cell response. Int J Sports Med (1995) 16(7):466–74.10.1055/s-2007-973039
    1. Shinkai S, Shore S, Shek PN, Shephard RJ. Acute exercise and immune function. Relationship between lymphocyte activity and changes in subset counts. Int J Sports Med (1992) 13(6):452–61.10.1055/s-2007-1021297
    1. Kakanis MW, Peake J, Brenu EW, Simmonds M, Gray B, Hooper SL, et al. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc Immunol Rev (2010) 16:119–37.
    1. Pedersen BK, Ullum H. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc (1994) 26(2):140–6.10.1249/00005768-199402000-00003
    1. Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res (2014) 58(2–3):193–210.10.1007/s12026-014-8517-0
    1. Kruger K, Mooren FC. T cell homing and exercise. Exerc Immunol Rev (2007) 13:37–54.
    1. Mooren FC, Kruger K. Apoptotic lymphocytes induce progenitor cell mobilization after exercise. J Appl Physiol (1985) (2015) 119(2):135–9.10.1152/japplphysiol.00287.2015
    1. Mars M, Govender S, Weston A, Naicker V, Chuturgoon A. High intensity exercise: a cause of lymphocyte apoptosis? Biochem Biophys Res Commun (1998) 249(2):366–70.10.1006/bbrc.1998.9156
    1. Mooren FC, Lechtermann A, Volker K. Exercise-induced apoptosis of lymphocytes depends on training status. Med Sci Sports Exerc (2004) 36(9):1476–83.10.1249/01.MSS.0000139897.34521.E9
    1. Mooren FC, Bloming D, Lechtermann A, Lerch MM, Volker K. Lymphocyte apoptosis after exhaustive and moderate exercise. J Appl Physiol (2002) 93(1):147–53.10.1152/japplphysiol.01262.2001
    1. Tanimura Y, Shimizu K, Tanabe K, Otsuki T, Yamauchi R, Matsubara Y, et al. Exercise-induced oxidative DNA damage and lymphocytopenia in sedentary young males. Med Sci Sports Exerc (2008) 40(8):1455–62.10.1249/MSS.0b013e31817242cf
    1. Simpson RJ, Florida-James GD, Whyte GP, Black JR, Ross JA, Guy K. Apoptosis does not contribute to the blood lymphocytopenia observed after intensive and downhill treadmill running in humans. Res Sports Med (2007) 15(3):157–74.10.1080/15438620701405339
    1. Shephard RJ, Shek PN. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis. Sports Med (1999) 28(3):177–95.10.2165/00007256-199928030-00003
    1. Hansen JB, Wilsgard L, Osterud B. Biphasic changes in leukocytes induced by strenuous exercise. Eur J Appl Physiol Occup Physiol (1991) 62(3):157–61.10.1007/BF00643735
    1. Freud AG, Caligiuri MA. Human natural killer cell development. Immunol Rev (2006) 214:56–72.10.1111/j.1600-065X.2006.00451.x
    1. Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology (2009) 126(4):458–65.10.1111/j.1365-2567.2008.03027.x
    1. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood (2010) 116(19):3853–64.10.1182/blood-2010-04-281675
    1. Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood (2010) 116(19):3865–74.10.1182/blood-2010-04-282301
    1. Bigley AB, Rezvani K, Chew C, Sekine T, Pistillo M, Crucian B, et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun (2014) 39:160–71.10.1016/j.bbi.2013.10.030
    1. Bigley AB, Rezvani K, Pistillo M, Reed J, Agha N, Kunz H, et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Part II: impact of latent cytomegalovirus infection and catecholamine sensitivity. Brain Behav Immun (2015) 49:59–65.10.1016/j.bbi.2014.12.027
    1. Simpson RJ, Florida-James GD, Cosgrove C, Whyte GP, Macrae S, Pircher H, et al. High-intensity exercise elicits the mobilization of senescent T lymphocytes into the peripheral blood compartment in human subjects. J Appl Physiol (1985) (2007) 103(1):396–401.10.1152/japplphysiol.00007.2007
    1. Simpson RJ, Cosgrove C, Ingram LA, Florida-James GD, Whyte GP, Pircher H, et al. Senescent T-lymphocytes are mobilised into the peripheral blood compartment in young and older humans after exhaustive exercise. Brain Behav Immun (2008) 22(4):544–51.10.1016/j.bbi.2007.11.002
    1. Simpson RJ, Cosgrove C, Chee MM, McFarlin BK, Bartlett DB, Spielmann G, et al. Senescent phenotypes and telomere lengths of peripheral blood T-cells mobilized by acute exercise in humans. Exerc Immunol Rev (2010) 16:40–55.
    1. Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab (2016) 23(3):554–62.10.1016/j.cmet.2016.01.011
    1. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology (2007) 121(1):1–14.10.1111/j.1365-2567.2007.02587.x
    1. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol (2013) 13(3):190–8.10.1038/nri3386
    1. Suzuki K, Hayano Y, Nakai A, Furuta F, Noda M. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J Exp Med (2016) 213(12):2567–74.10.1084/jem.20160723
    1. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood (2009) 113(21):5134–43.10.1182/blood-2008-11-190769
    1. Hojman P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans (2017) 45(4):905–11.10.1042/BST20160466
    1. Turner JE, Wadley AJ, Aldred S, Fisher JP, Bosch JA, Campbell JP. Intensive exercise does not preferentially mobilize skin-homing T cells and NK cells. Med Sci Sports Exerc (2016) 48(7):1285–93.10.1249/MSS.0000000000000914
    1. Hanson ED, Danson E, Nguyen-Robertson CV, Fyfe JJ, Stepto NK, Bartlett DB, et al. Maximal exercise increases mucosal associated invariant T cell frequency and number in healthy young men. Eur J Appl Physiol (2017) 117(11):2159–69.10.1007/s00421-017-3704-z
    1. Gross E, Sunwoo JB, Bui JD. Cancer immunosurveillance and immunoediting by natural killer cells. Cancer J (2013) 19(6):483–9.10.1097/PPO.0000000000000005
    1. Simpson RJ, Bigley AB, Agha N, Hanley PJ, Bollard CM. Mobilizing immune cells with exercise for cancer immunotherapy. Exerc Sport Sci Rev (2017) 45(3):163–72.10.1249/JES.0000000000000114
    1. Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med (2016) 176(6):816–25.10.1001/jamainternmed.2016.1548
    1. Turner JE, Aldred S, Witard OC, Drayson MT, Moss PM, Bosch JA. Latent cytomegalovirus infection amplifies CD8 T-lymphocyte mobilisation and egress in response to exercise. Brain Behav Immun (2010) 24(8):1362–70.10.1016/j.bbi.2010.07.239
    1. Lancaster GI, Khan Q, Drysdale PT, Wallace F, Jeukendrup AE, Drayson MT, et al. Effect of prolonged exercise and carbohydrate ingestion on type 1 and type 2 T lymphocyte distribution and intracellular cytokine production in humans. J Appl Physiol (1985) (2005) 98(2):565–71.10.1152/japplphysiol.00754.2004
    1. Starkie RL, Rolland J, Febbraio MA. Effect of adrenergic blockade on lymphocyte cytokine production at rest and during exercise. Am J Physiol Cell Physiol (2001) 281(4):C1233–40.10.1152/ajpcell.2001.281.4.C1233
    1. Siedlik JA, Deckert JA, Benedict SH, Bhatta A, Dunbar AJ, Vardiman JP, et al. T cell activation and proliferation following acute exercise in human subjects is altered by storage conditions and mitogen selection. J Immunol Methods (2017) 446:7–14.10.1016/j.jim.2017.03.017
    1. Siedlik JA, Benedict SH, Landes EJ, Weir JP, Vardiman JP, Gallagher PM. Acute bouts of exercise induce a suppressive effect on lymphocyte proliferation in human subjects: a meta-analysis. Brain Behav Immun (2016) 56:343–51.10.1016/j.bbi.2016.04.008
    1. Zimmer P, Schenk A, Kieven M, Holthaus M, Lehmann J, Lovenich L, et al. Exercise induced alterations in NK-cell cytotoxicity – methodological issues and future perspectives. Exerc Immunol Rev (2017) 23:66–81.
    1. McFarlin BK, Venable AS, Carpenter CK, Henning AL, Stephan O. Oral supplementation with baker’s yeast beta glucan is associated with altered monocytes, T cells and cytokines following a bout of strenuous exercise. Front Physiol (2017) 8:786.10.3389/fphys.2017.00786
    1. Witard OC, Turner JE, Jackman SR, Kies AK, Jeukendrup AE, Bosch JA, et al. High dietary protein restores overreaching induced impairments in leukocyte trafficking and reduces the incidence of upper respiratory tract infection in elite cyclists. Brain Behav Immun (2014) 39:211–9.10.1016/j.bbi.2013.10.002
    1. Albers R, Bourdet-Sicard R, Braun D, Calder PC, Herz U, Lambert C, et al. Monitoring immune modulation by nutrition in the general population: identifying and substantiating effects on human health. Br J Nutr (2013) 110(Suppl 2):S1–30.10.1017/S0007114513001505
    1. Burns VE, Gallagher S. Antibody response to vaccination as a marker of in vivo immune function in psychophysiological research. Neurosci Biobehav Rev (2010) 35(1):122–6.10.1016/j.neubiorev.2010.01.005
    1. Edwards KM, Burns VE, Reynolds T, Carroll D, Drayson M, Ring C. Acute stress exposure prior to influenza vaccination enhances antibody response in women. Brain Behav Immun (2006) 20(2):159–68.10.1016/j.bbi.2005.07.001
    1. Edwards KM, Burns VE, Allen LM, McPhee JS, Bosch JA, Carroll D, et al. Eccentric exercise as an adjuvant to influenza vaccination in humans. Brain Behav Immun (2007) 21(2):209–17.10.1016/j.bbi.2006.04.158
    1. Edwards KM, Burns VE, Adkins AE, Carroll D, Drayson M, Ring C. Meningococcal A vaccination response is enhanced by acute stress in men. Psychosom Med (2008) 70(2):147–51.10.1097/PSY.0b013e318164232e
    1. Edwards KM, Campbell JP, Ring C, Drayson MT, Bosch JA, Downes C, et al. Exercise intensity does not influence the efficacy of eccentric exercise as a behavioural adjuvant to vaccination. Brain Behav Immun (2010) 24(4):623–30.10.1016/j.bbi.2010.01.009
    1. Edwards KM, Pung MA, Tomfohr LM, Ziegler MG, Campbell JP, Drayson MT, et al. Acute exercise enhancement of pneumococcal vaccination response: a randomised controlled trial of weaker and stronger immune response. Vaccine (2012) 30(45):6389–95.10.1016/j.vaccine.2012.08.022
    1. Ranadive SM, Cook M, Kappus RM, Yan H, Lane AD, Woods JA, et al. Effect of acute aerobic exercise on vaccine efficacy in older adults. Med Sci Sports Exerc (2014) 46(3):455–61.10.1249/MSS.0b013e3182a75ff2
    1. Long JE, Ring C, Drayson M, Bosch J, Campbell JP, Bhabra J, et al. Vaccination response following aerobic exercise: can a brisk walk enhance antibody response to pneumococcal and influenza vaccinations? Brain Behav Immun (2012) 26(4):680–7.10.1016/j.bbi.2012.02.004
    1. Edwards KM, Pascoe AR, Fiatarone-Singh MA, Singh NA, Kok J, Booy R. A randomised controlled trial of resistance exercise prior to administration of influenza vaccination in older adults. Brain Behav Immun (2015) 49:e24–5.10.1016/j.bbi.2015.06.102
    1. Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL, Thiebaut R, et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci U S A (2014) 111(2):869–74.10.1073/pnas.1321060111
    1. Trigunaite A, Dimo J, Jorgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol (2015) 294(2):87–94.10.1016/j.cellimm.2015.02.004
    1. Haq K, McElhaney JE. Immunosenescence: influenza vaccination and the elderly. Curr Opin Immunol (2014) 29:38–42.10.1016/j.coi.2014.03.008
    1. Kohut ML, Cooper MM, Nickolaus MS, Russell DR, Cunnick JE. Exercise and psychosocial factors modulate immunity to influenza vaccine in elderly individuals. J Gerontol A Biol Sci Med Sci (2002) 57(9):M557–62.10.1093/gerona/57.9.M557
    1. Kohut ML, Arntson BA, Lee W, Rozeboom K, Yoon KJ, Cunnick JE, et al. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine (2004) 22(17–18):2298–306.10.1016/j.vaccine.2003.11.023
    1. Smith TP, Kennedy SL, Fleshner M. Influence of age and physical activity on the primary in vivo antibody and T cell-mediated responses in men. J Appl Physiol (1985) (2004) 97(2):491–8.10.1152/japplphysiol.01404.2003
    1. Schuler PB, Leblanc PA, Marzilli TS. Effect of physical activity on the production of specific antibody in response to the 1998–99 influenza virus vaccine in older adults. J Sports Med Phys Fitness (2003) 43(3):404.
    1. Grant RW, Mariani RA, Vieira VJ, Fleshner M, Smith TP, Keylock KT, et al. Cardiovascular exercise intervention improves the primary antibody response to keyhole limpet hemocyanin (KLH) in previously sedentary older adults. Brain Behav Immun (2008) 22(6):923–32.10.1016/j.bbi.2008.01.006
    1. Woods JA, Keylock KT, Lowder T, Vieira VJ, Zelkovich W, Dumich S, et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial. J Am Geriatr Soc (2009) 57(12):2183–91.10.1111/j.1532-5415.2009.02563.x
    1. Yang Y, Verkuilen J, Rosengren KS, Mariani RA, Reed M, Grubisich SA, et al. Effects of a traditional Taiji/Qigong curriculum on older adults’ immune response to influenza vaccine. Med Sport Sci (2008) 52:64–76.10.1159/000134285
    1. de Araujo AL, Silva LC, Fernandes JR, Matias Mde S, Boas LS, Machado CM, et al. Elderly men with moderate and intense training lifestyle present sustained higher antibody responses to influenza vaccine. Age (Dordr) (2015) 37(6):105.10.1007/s11357-015-9843-4
    1. Kapasi ZF, Catlin PA, Joyner DR, Lewis ML, Schwartz AL, Townsend EL. The effects of intense physical exercise on secondary antibody response in young and old mice. Phys Ther (2000) 80(11):1076–86.
    1. Grande AJ, Reid H, Thomas EE, Nunan D, Foster C. Exercise prior to influenza vaccination for limiting influenza incidence and its related complications in adults. Cochrane Database Syst Rev (2016) (8):CD011857.10.1002/14651858.CD011857.pub2
    1. Warren K, Thompson N, Wannemuehler M, Kohut M. Antibody and CD8+ T cell memory response to influenza A/PR/8/34 infection is reduced in treadmill-exercised mice, yet still protective. J Appl Physiol (1985) (2013) 114(10):1413–20.10.1152/japplphysiol.01355.2012
    1. Sim YJ, Yu S, Yoon KJ, Loiacono CM, Kohut ML. Chronic exercise reduces illness severity, decreases viral load, and results in greater anti-inflammatory effects than acute exercise during influenza infection. J Infect Dis (2009) 200(9):1434–42.10.1086/606014
    1. Lowder T, Padgett DA, Woods JA. Moderate exercise protects mice from death due to influenza virus. Brain Behav Immun (2005) 19(5):377–80.10.1016/j.bbi.2005.04.002
    1. Nosbaum A, Vocanson M, Rozieres A, Hennino A, Nicolas JF. Allergic and irritant contact dermatitis. Eur J Dermatol (2009) 19(4):325–32.10.1684/ejd.2009.0686
    1. Gulati N, Suarez-Farinas M, Fuentes-Duculan J, Gilleaudeau P, Sullivan-Whalen M, Correa da Rosa J, et al. Molecular characterization of human skin response to diphencyprone at peak and resolution phases: therapeutic insights. J Invest Dermatol (2014) 134(10):2531–40.10.1038/jid.2014.196
    1. Diment BC, Fortes MB, Edwards JP, Hanstock HG, Ward MD, Dunstall HM, et al. Exercise intensity and duration effects on in vivo immunity. Med Sci Sports Exerc (2015) 47(7):1390–8.10.1249/MSS.0000000000000562
    1. Harper Smith AD, Coakley SL, Ward MD, Macfarlane AW, Friedmann PS, Walsh NP. Exercise-induced stress inhibits both the induction and elicitation phases of in vivo T-cell-mediated immune responses in humans. Brain Behav Immun (2011) 25(6):1136–42.10.1016/j.bbi.2011.02.014
    1. Ceddia MA, Price EA, Kohlmeier CK, Evans JK, Lu Q, McAuley E, et al. Differential leukocytosis and lymphocyte mitogenic response to acute maximal exercise in the young and old. Med Sci Sports Exerc (1999) 31(6):829–36.10.1097/00005768-199906000-00011
    1. Woods JA, Evans JK, Wolters BW, Ceddia MA, McAuley E. Effects of maximal exercise on natural killer (NK) cell cytotoxicity and responsiveness to interferon-alpha in the young and old. J Gerontol A Biol Sci Med Sci (1998) 53(6):B430–7.10.1093/gerona/53A.6.B430
    1. Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC, Kunz H. Exercise and the aging immune system. Ageing Res Rev (2012) 11(3):404–20.10.1016/j.arr.2012.03.003
    1. Kohut ML, Senchina DS. Reversing age-associated immunosenescence via exercise. Exerc Immunol Rev (2004) 10:6–41.
    1. Woods JA, Lowder TW, Keylock KT. Can exercise training improve immune function in the aged? Ann N Y Acad Sci (2002) 959:117–27.10.1111/j.1749-6632.2002.tb02088.x
    1. Simpson RJ, Bigley AB, Spielmann G, LaVoy EC, Kunz H, Bollard CM. Human cytomegalovirus infection and the immune response to exercise. Exerc Immunol Rev (2016) 22:8–27.
    1. Bartlett DB, Fox O, McNulty CL, Greenwood HL, Murphy L, Sapey E, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav Immun (2016) 56:12–20.10.1016/j.bbi.2016.02.024
    1. Bartlett DB, Shepherd SO, Wilson OJ, Adlan AM, Wagenmakers AJM, Shaw CS, et al. Neutrophil and monocyte bactericidal responses to 10 weeks of low-volume high-intensity interval or moderate-intensity continuous training in sedentary adults. Oxid Med Cell Longev (2017) 2017:8148742.10.1155/2017/8148742
    1. Shephard RJ. Development of the discipline of exercise immunology. Exerc Immunol Rev (2010) 16:194–222.
    1. Hazeldine J, Lord JM. Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology (2015) 16(2):187–201.10.1007/s10522-014-9514-3
    1. Peralbo E, Alonso C, Solana R. Invariant NKT and NKT-like lymphocytes: two different T cell subsets that are differentially affected by ageing. Exp Gerontol (2007) 42(8):703–8.10.1016/j.exger.2007.05.002
    1. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood (2010) 116(16):e74–80.10.1182/blood-2010-02-258558
    1. Goh J, Ladiges WC. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity. Mech Ageing Dev (2014) 139:41–8.10.1016/j.mad.2014.06.004
    1. Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat Immunol (2012) 13(8):707–12.10.1038/ni.2343
    1. Garg SK, Delaney C, Shi H, Yung R. Changes in adipose tissue macrophages and T cells during aging. Crit Rev Immunol (2014) 34(1):1–14.10.1615/CritRevImmunol.2013006833
    1. Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab (2014) 20(4):614–25.10.1016/j.cmet.2014.08.010
    1. Bourlier V, Zakaroff-Girard A, Miranville A, De Barros S, Maumus M, Sengenes C, et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation (2008) 117(6):806–15.10.1161/CIRCULATIONAHA.107.724096
    1. Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Gyori G, et al. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond) (2007) 31(9):1420–8.10.1038/sj.ijo.0803632
    1. Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW, Jr. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab (2013) 18(6):816–30.10.1016/j.cmet.2013.11.001
    1. Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol (2015) 6:263.10.3389/fimmu.2015.00263
    1. Mills CD. Anatomy of a discovery: m1 and m2 macrophages. Front Immunol (2015) 6:212.10.3389/fimmu.2015.00212
    1. Bueno V, Sant’Anna OA, Lord JM. Ageing and myeloid-derived suppressor cells: possible involvement in immunosenescence and age-related disease. Age (Dordr) (2014) 36(6):9729.10.1007/s11357-014-9729-x
    1. Shearer GM. Th1/Th2 changes in aging. Mech Ageing Dev (1997) 94(1–3):1–5.
    1. Schmitt V, Rink L, Uciechowski P. The Th17/Treg balance is disturbed during aging. Exp Gerontol (2013) 48(12):1379–86.10.1016/j.exger.2013.09.003
    1. Fulop T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol (2013) 4:271.10.3389/fimmu.2013.00271
    1. Pawelec G. Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing (2012) 9(1):15.10.1186/1742-4933-9-15
    1. Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol (2013) 13(5):376–89.10.1038/nri3433
    1. Roux A, Mourin G, Larsen M, Fastenackels S, Urrutia A, Gorochov G, et al. Differential impact of age and cytomegalovirus infection on the gammadelta T cell compartment. J Immunol (2013) 191(3):1300–6.10.4049/jimmunol.1202940
    1. Colonna-Romano G, Aquino A, Bulati M, Lio D, Candore G, Oddo G, et al. Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence. Exp Gerontol (2004) 39(10):1439–46.10.1016/j.exger.2004.07.005
    1. Michishita Y, Hirokawa M, Guo YM, Abe Y, Liu J, Ubukawa K, et al. Age-associated alteration of gammadelta T-cell repertoire and different profiles of activation-induced death of Vdelta1 and Vdelta2 T cells. Int J Hematol (2011) 94(3):230–40.10.1007/s12185-011-0907-7
    1. Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the immune aging process: a mini-review. Gerontology (2014) 60(2):130–7.10.1159/000355303
    1. Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol (2009) 9(3):185–94.10.1038/nri2508
    1. Appay V, Sauce D. Naive T cells: the crux of cellular immune aging? Exp Gerontol (2014) 54:90–3.10.1016/j.exger.2014.01.003
    1. Pawelec G. Immunosenenescence: role of cytomegalovirus. Exp Gerontol (2013) 54:1–5.10.1016/j.exger.2013.11.010
    1. Wikby A, Maxson P, Olsson J, Johansson B, Ferguson FG. Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev (1998) 102(2–3):187–98.10.1016/S0047-6374(97)00151-6
    1. Pawelec G, Ferguson FG, Wikby A. The SENIEUR protocol after 16 years. Mech Ageing Dev (2001) 122(2):132–4.10.1016/S0047-6374(00)00240-2
    1. Wikby A, Johansson B, Ferguson F, Olsson J. Age-related changes in immune parameters in a very old population of Swedish people: a longitudinal study. Exp Gerontol (1994) 29(5):531–41.10.1016/0531-5565(94)90036-1
    1. Wikby A, Nilsson BO, Forsey R, Thompson J, Strindhall J, Lofgren S, et al. The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev (2006) 127(8):695–704.10.1016/j.mad.2006.04.003
    1. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, et al. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci (2005) 60(5):556–65.10.1093/gerona/60.5.556
    1. Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO, Ferguson FG. Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev (2000) 121(1–3):187–201.10.1016/S0047-6374(00)00210-4
    1. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci (2000) 908:244–54.10.1111/j.1749-6632.2000.tb06651.x
    1. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev (2007) 128(1):92–105.10.1016/j.mad.2006.11.016
    1. Giovannini S, Onder G, Liperoti R, Russo A, Carter C, Capoluongo E, et al. Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, community-living elderly individuals. J Am Geriatr Soc (2011) 59(9):1679–85.10.1111/j.1532-5415.2011.03570.x
    1. Baune BT, Rothermundt M, Ladwig KH, Meisinger C, Berger K. Systemic inflammation (interleukin 6) predicts all-cause mortality in men: results from a 9-year follow-up of the MEMO Study. Age (Dordr) (2011) 33(2):209–17.10.1007/s11357-010-9165-5
    1. Bruunsgaard H, Ladelund S, Pedersen AN, Schroll M, Jorgensen T, Pedersen BK. Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clin Exp Immunol (2003) 132(1):24–31.10.1046/j.1365-2249.2003.02137.x
    1. McElhaney JE, Kuchel GA, Zhou X, Swain SL, Haynes L. T-cell immunity to influenza in older adults: a pathophysiological framework for development of more effective vaccines. Front Immunol (2016) 7:41.10.3389/fimmu.2016.00041
    1. Frasca D, Blomberg BB. Aging, cytomegalovirus (CMV) and influenza vaccine responses. Hum Vaccin Immunother (2016) 12(3):682–90.10.1080/21645515.2015.1105413
    1. Brown FF, Bigley AB, Sherry C, Neal CM, Witard OC, Simpson RJ, et al. Training status and sex influence on senescent T-lymphocyte redistribution in response to acute maximal exercise. Brain Behav Immun (2014) 39:152–9.10.1016/j.bbi.2013.10.031
    1. Brown FF, Bigley AB, Ross JC, LaVoy EC, Simpson RJ, Galloway SD. T-lymphocyte populations following a period of high volume training in female soccer players. Physiol Behav (2015) 152(Pt A):175–81.10.1016/j.physbeh.2015.09.027
    1. Gustafson MP, DiCostanzo AC, Wheatley CM, Kim CH, Bornschlegl S, Gastineau DA, et al. A systems biology approach to investigating the influence of exercise and fitness on the composition of leukocytes in peripheral blood. J Immunother Cancer (2017) 5:30.10.1186/s40425-017-0231-8
    1. Prieto-Hinojosa A, Knight A, Compton C, Gleeson M, Travers PJ. Reduced thymic output in elite athletes. Brain Behav Immun (2014) 39:75–9.10.1016/j.bbi.2014.01.004
    1. Moro-Garcia MA, Fernandez-Garcia B, Echeverria A, Rodriguez-Alonso M, Suarez-Garcia FM, Solano-Jaurrieta JJ, et al. Frequent participation in high volume exercise throughout life is associated with a more differentiated adaptive immune response. Brain Behav Immun (2014) 39:61–74.10.1016/j.bbi.2013.12.014
    1. Teixeira AM, Rama L, Carvalho HM, Borges G, Carvalheiro T, Gleeson M, et al. Changes in naive and memory T-cells in elite swimmers during a winter training season. Brain Behav Immun (2014) 39:186–93.10.1016/j.bbi.2014.01.002
    1. Cosgrove C, Galloway SD, Neal C, Hunter AM, McFarlin BK, Spielmann G, et al. The impact of 6-month training preparation for an Ironman triathlon on the proportions of naive, memory and senescent T cells in resting blood. Eur J Appl Physiol (2012) 112(8):2989–98.10.1007/s00421-011-2273-9
    1. Dopico XC, Evangelou M, Ferreira RC, Guo H, Pekalski ML, Smyth DJ, et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat Commun (2015) 6:7000.10.1038/ncomms8000
    1. Goldinger A, Shakhbazov K, Henders AK, McRae AF, Montgomery GW, Powell JE. Seasonal effects on gene expression. PLoS One (2015) 10(5):e0126995.10.1371/journal.pone.0126995
    1. Spielmann G, McFarlin BK, O’Connor DP, Smith PJ, Pircher H, Simpson RJ. Aerobic fitness is associated with lower proportions of senescent blood T-cells in man. Brain Behav Immun (2011) 25(8):1521–9.10.1016/j.bbi.2011.07.226
    1. Silva LC, de Araujo AL, Fernandes JR, Matias Mde S, Silva PR, Duarte AJ, et al. Moderate and intense exercise lifestyles attenuate the effects of aging on telomere length and the survival and composition of T cell subpopulations. Age (Dordr) (2016) 38(1):24.10.1007/s11357-016-9879-0
    1. Duggal NA, Pollock RD, Lazarus NR, Harridge S, Lord JM. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physiacl activity in adulthood. Aging Cell (2018).10.1111/acel.12750
    1. Shimizu K, Kimura F, Akimoto T, Akama T, Tanabe K, Nishijima T, et al. Effect of moderate exercise training on T-helper cell subpopulations in elderly people. Exerc Immunol Rev (2008) 14:24–37.
    1. Cao Dinh H, Beyer I, Mets T, Onyema OO, Njemini R, Renmans W, et al. Effects of physical exercise on markers of cellular immunosenescence: a systematic review. Calcif Tissue Int (2017) 100(2):193–215.10.1007/s00223-016-0212-9
    1. Kruger K, Frost S, Most E, Volker K, Pallauf J, Mooren FC. Exercise affects tissue lymphocyte apoptosis via redox-sensitive and Fas-dependent signaling pathways. Am J Physiol Regul Integr Comp Physiol (2009) 296(5):R1518–27.10.1152/ajpregu.90994.2008
    1. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol (2002) 169(4):1984–92.10.4049/jimmunol.169.4.1984
    1. Mueller YM, De Rosa SC, Hutton JA, Witek J, Roederer M, Altman JD, et al. Increased CD95/Fas-induced apoptosis of HIV-specific CD8(+) T cells. Immunity (2001) 15(6):871–82.10.1016/S1074-7613(01)00246-1
    1. Wang JS, Lin CT. Systemic hypoxia promotes lymphocyte apoptosis induced by oxidative stress during moderate exercise. Eur J Appl Physiol (2010) 108(2):371–82.10.1007/s00421-009-1231-2
    1. Takahashi A, Hanson MG, Norell HR, Havelka AM, Kono K, Malmberg KJ, et al. Preferential cell death of CD8+ effector memory (CCR7-CD45RA-) T cells by hydrogen peroxide-induced oxidative stress. J Immunol (2005) 174(10):6080–7.10.4049/jimmunol.174.10.6080
    1. Stocchi R, Ward KN, Fanin R, Baccarani M, Apperley JF. Management of human cytomegalovirus infection and disease after allogeneic bone marrow transplantation. Haematologica (1999) 84(1):71–9.
    1. Derhovanessian E, Maier AB, Hahnel K, Zelba H, de Craen AJ, Roelofs H, et al. Lower proportion of naive peripheral CD8+ T cells and an unopposed pro-inflammatory response to human cytomegalovirus proteins in vitro are associated with longer survival in very elderly people. Age (Dordr) (2013) 35(4):1387–99.10.1007/s11357-012-9425-7
    1. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med (2005) 202(5):673–85.10.1084/jem.20050882
    1. Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine (2000) 18(16):1717–20.10.1016/S0264-410X(99)00513-7
    1. Akbar AN, Fletcher JM. Memory T cell homeostasis and senescence during aging. Curr Opin Immunol (2005) 17(5):480–5.10.1016/j.coi.2005.07.019
    1. van Leeuwen EM, Koning JJ, Remmerswaal EB, van Baarle D, van Lier RA, ten Berge IJ. Differential usage of cellular niches by cytomegalovirus versus EBV- and influenza virus-specific CD8+ T cells. J Immunol (2006) 177(8):4998–5005.10.4049/jimmunol.177.8.4998
    1. Huster KM, Stemberger C, Gasteiger G, Kastenmuller W, Drexler I, Busch DH. Cutting edge: memory CD8 T cell compartment grows in size with immunological experience but nevertheless can lose function. J Immunol (2009) 183(11):6898–902.10.4049/jimmunol.0902454
    1. Ferrando-Martinez S, Franco JM, Ruiz-Mateos E, Hernandez A, Ordonez A, Gutierrez E, et al. A reliable and simplified sj/beta-TREC ratio quantification method for human thymic output measurement. J Immunol Methods (2010) 352(1–2):111–7.10.1016/j.jim.2009.11.007
    1. Radtke F, MacDonald HR, Tacchini-Cottier F. Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol (2013) 13(6):427–37.10.1038/nri3445
    1. Haugen F, Norheim F, Lian H, Wensaas AJ, Dueland S, Berg O, et al. IL-7 is expressed and secreted by human skeletal muscle cells. Am J Physiol Cell Physiol (2010) 298(4):C807–16.10.1152/ajpcell.00094.2009
    1. Fry TJ, Mackall CL. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol (2005) 174(11):6571–6.10.4049/jimmunol.174.11.6571
    1. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev (2013) 93(1):359–404.10.1152/physrev.00033.2011
    1. Trim W, Turner JE, Thompson D. Parallels in immunometabolic adipose tissue dysfunction with ageing and obesity. Front Immunol (2018) 9:169.10.3389/fimmu.2018.00169
    1. Nieman DC, Henson DA, Nehlsen-Cannarella SL, Ekkens M, Utter AC, Butterworth DE, et al. Influence of obesity on immune function. J Am Diet Assoc (1999) 99(3):294–9.10.1016/S0002-8223(99)00077-2
    1. Muezzinler A, Zaineddin AK, Brenner H. Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obes Rev (2014) 15(3):192–201.10.1111/obr.12126
    1. van der Weerd K, Dik WA, Schrijver B, Schweitzer DH, Langerak AW, Drexhage HA, et al. Morbidly obese human subjects have increased peripheral blood CD4+ T cells with skewing toward a Treg- and Th2-dominated phenotype. Diabetes (2012) 61(2):401–8.10.2337/db11-1065
    1. Alam I, Larbi A, Pawelec G. Nutritional status influences peripheral immune cell phenotypes in healthy men in rural Pakistan. Immun Ageing (2012) 9(1):16.10.1186/1742-4933-9-16
    1. Spielmann G, Johnston CA, O’Connor DP, Foreyt JP, Simpson RJ. Excess body mass is associated with T cell differentiation indicative of immune ageing in children. Clin Exp Immunol (2014) 176(2):246–54.10.1111/cei.12267
    1. Costanzo AE, Taylor KR, Dutt S, Han PP, Fujioka K, Jameson JM. Obesity impairs gammadelta T cell homeostasis and antiviral function in humans. PLoS One (2015) 10(3):e0120918.10.1371/journal.pone.0120918
    1. Aroor AR, DeMarco VG. Oxidative stress and obesity: the chicken or the egg? Diabetes (2014) 63(7):2216–8.10.2337/db14-0424
    1. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol (2011) 11(9):607–15.10.1038/nri3041
    1. Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med (2008) 44(2):153–9.10.1016/j.freeradbiomed.2007.01.029
    1. Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest (2014) 124(9):4004–16.10.1172/JCI75051

Source: PubMed

3
S'abonner