Combined Citrulline and Glutathione Supplementation Improves Endothelial Function and Blood Pressure Reactivity in Postmenopausal Women

Arturo Figueroa, Arun Maharaj, Yejin Kang, Katherine N Dillon, Mauricio A Martinez, Masahiko Morita, Dai Nogimura, Stephen M Fischer, Arturo Figueroa, Arun Maharaj, Yejin Kang, Katherine N Dillon, Mauricio A Martinez, Masahiko Morita, Dai Nogimura, Stephen M Fischer

Abstract

Postmenopausal women (PMW) may experience endothelial dysfunction associated with arginine (ARG) deficiency relative to asymmetric dimethylarginine (ADMA) caused by oxidative stress. Endothelial dysfunction contributes to increased blood pressure (BP) responsiveness to sympathoexcitation induced by the cold pressor test (CPT). We investigated the effects of citrulline alone (CIT) and combined with the antioxidant glutathione (CIT+GSH) on vascular function. Forty-four healthy PMW were randomized to CIT (6 g), CIT+GSH (2 g + 200 mg: Setria®) or placebo (PL) for 4 weeks. Brachial artery flow-mediated dilation (FMD), aortic stiffness (pulse wave velocity, PWV), brachial and aortic BP reactivity to CPT, and serum fasting blood glucose (FBG), ARG, and ARG/ADMA ratio were measured. Baseline FBG was higher in CIT+GSH vs. PL. FMD increased after CIT+GSH vs. PL (p < 0.05). CIT and CIT+GSH increased ARG/ADMA (p < 0.05), but did not affect aortic PWV. CIT+GSH attenuated the brachial and aortic systolic BP and mean arterial pressure (MAP) responses to CPT vs. PL and CIT (p < 0.05). The improvements in FMD were related to baseline FMD (r = -0.39, p < 0.05) and aortic MAP response to CPT (r = -0.33, p < 0.05). This study showed that CIT+GSH improved FMD and attenuated systolic BP and MAP reactivity in PMW. Although CIT increased ARG/ADMA, it did not improve FMD in healthy PMW.

Keywords: arginine/ADMA ratio; blood pressure responsiveness; citrulline; endothelial function; glutathione.

Conflict of interest statement

M.M. and D.N. are employees of Kirin Holdings Co., Ltd. M.M., D.N. and Kirin had no influence on participant handling, data collection, analysis or interpretation, and manuscript writing. The other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
CONSORT flow chart of participants through the study. CIT, citrulline, CIT+GSH, and CIT+glutathione.
Figure 2
Figure 2
Changes (Δ) in brachial artery flow-mediated dilation (ΔFMD%) from 0 to 4 weeks. Abbreviations: CIT, citrulline; CIT+GSH, CIT+glutathione. * p < 0.05 vs. placebo.
Figure 3
Figure 3
Relationship between changes (Δ) in the brachial artery flow-mediated dilation (ΔFMD%) from 0 to 4 weeks and baseline (0 week) FMD%. Abbreviations: CIT, citrulline; CIT+GSH, CIT+glutathione.
Figure 4
Figure 4
Changes (Δ) in (A) the brachial systolic blood pressure SBP (SBP), (B) brachial mean arterial pressure (MAP), (C) aortic SBP, and (D) aortic MAP to the cold pressor test before and after supplementations. Abbreviations: CIT, citrulline; CIT+GSH, CIT+glutathione. * p < 0.05 before vs. after, †p < 0.05 vs. placebo and CIT, ‡p < 0.05 vs. placebo.
Figure 5
Figure 5
Changes (Δ) in serum levels of arginine (A), ornithine (B), and the arginine/ADMA ratio (C) from 0–4 weeks in the three groups. Values are the mean ± SE. Abbreviations: ARG, arginine; ADMA, asymmetric dimethylarginine; CIT, citrulline; CIT+GSH, CIT+glutathione. * p < 0.05 vs. placebo and CIT+GSH; †p < 0.05 vs. CIT+GSH.

References

    1. Rossi G.P., Seccia T.M., Nussdorfer G.G. Reciprocal regulation of endothelin-1 and nitric oxide: Relevance in the physiology and pathology of the cardiovascular system. Int. Rev. Cytol. 2001;209:241–272.
    1. Förstermann U., Sessa W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2011;33:829–837. doi: 10.1093/eurheartj/ehr304.
    1. Deanfield J.E., Halcox J.P., Rabelink T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation. 2007;115:1285–1295. doi: 10.1161/CIRCULATIONAHA.106.652859.
    1. Klawitter J., Hildreth K.L., Christians U., Kohrt W.M., Moreau K.L. A relative L-arginine deficiency contributes to endothelial dysfunction across the stages of the menopausal transition. Physiol. Rep. 2017;5:e13409. doi: 10.14814/phy2.13409.
    1. Pernow J., Jung C. Arginase as a potential target in the treatment of cardiovascular disease: Reversal of arginine steal? Cardiovasc. Res. 2013;98:334–343. doi: 10.1093/cvr/cvt036.
    1. Berkowitz D.E., White R., Li D.C., Minhas K.M., Cernetich A., Kim S., Burke S., Shoukas A.A., Nyhan D., Champion H.C., et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation. 2003;108:2000–2006. doi: 10.1161/01.CIR.0000092948.04444.C7.
    1. Bode-Boger S.M., Scalera F., Ignarro L.J. The l-arginine paradox: Importance of the l-arginine/asymmetrical dimethylarginine ratio. Pharmacol. Ther. 2007;114:295–306. doi: 10.1016/j.pharmthera.2007.03.002.
    1. Boger R.H., Bode-Boger S.M., Szuba A., Tsao P.S., Chan J.R., Tangphao O., Blaschke T.F., Cooke J.P. Asymmetric dimethylarginine (ADMA): A novel risk factor for endothelial dysfunction: Its role in hypercholesterolemia. Circulation. 1998;98:1842–1847. doi: 10.1161/01.CIR.98.18.1842.
    1. Sydow K., Schwedhelm E., Arakawa N., Bode-Boger S.M., Tsikas D., Hornig B., Frolich J.C., Boger R.H. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: Effects of L-arginine and B vitamins. Cardiovasc. Res. 2003;57:244–252. doi: 10.1016/S0008-6363(02)00617-X.
    1. Moreau K.L., Deane K.D., Meditz A.L., Kohrt W.M. Tumor necrosis factor-alpha inhibition improves endothelial function and decreases arterial stiffness in estrogen-deficient postmenopausal women. Atherosclerosis. 2013;230:390–396. doi: 10.1016/j.atherosclerosis.2013.07.057.
    1. Moreau K.L., Hildreth K.L., Meditz A.L., Deane K.D., Kohrt W.M. Endothelial function is impaired across the stages of the menopause transition in healthy women. J. Clin. Endocrinol. Metab. 2012;97:4692–4700. doi: 10.1210/jc.2012-2244.
    1. Tomiyama H., Ishizu T., Kohro T., Matsumoto C., Higashi Y., Takase B., Suzuki T., Ueda S., Yamazaki T., Furumoto T., et al. Longitudinal association among endothelial function, arterial stiffness and subclinical organ damage in hypertension. Int. J. Cardiol. 2018;253:161–166. doi: 10.1016/j.ijcard.2017.11.022.
    1. Rossi R., Chiurlia E., Nuzzo A., Cioni E., Origliani G., Modena M.G. Flow-mediated vasodilation and the risk of developing hypertension in healthy postmenopausal women. J. Am. Coll. Cardiol. 2004;44:1636–1640. doi: 10.1016/j.jacc.2004.07.027.
    1. Wenner M.M., Greaney J.L., Matthews E.L., McGinty S., Kaur J., Vongpatanasin W., Fadel P.J. Influence of Age and Estradiol on Sympathetic Nerve Activity Responses to Exercise in Women. Med. Sci. Sports Exerc. 2022;54:408–416. doi: 10.1249/MSS.0000000000002823.
    1. Coutinho T., Borlaug B.A., Pellikka P.A., Turner S.T., Kullo I.J. Sex differences in arterial stiffness and ventricular-arterial interactions. J. Am. Coll. Cardiol. 2013;61:96–103. doi: 10.1016/j.jacc.2012.08.997.
    1. Keller-Ross M.L., Cunningham H.A., Carter J.R. Impact of age and sex on neural cardiovascular responsiveness to cold pressor test in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020;319:R288–R295. doi: 10.1152/ajpregu.00045.2020.
    1. Baker S.E., Limberg J.K., Ranadive S.M., Joyner M.J. Neurovascular control of blood pressure is influenced by aging, sex, and sex hormones. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016;311:R1271–R1275. doi: 10.1152/ajpregu.00288.2016.
    1. Menkes M.S., Matthews K.A., Krantz D.S., Lundberg U., Mead L.A., Qaqish B., Liang K.Y., Thomas C.B., Pearson T.A. Cardiovascular reactivity to the cold pressor test as a predictor of hypertension. Hypertension. 1989;14:524–530. doi: 10.1161/01.HYP.14.5.524.
    1. Han Y., Du J., Wang J., Liu B., Yan Y.L., Deng S.B., Zou Y., Jing X.D., Du J.L., Liu Y.J., et al. Cold Pressor Test in Primary Hypertension: A Cross-Sectional Study. Front. Cardiovasc. Med. 2022;9:860322. doi: 10.3389/fcvm.2022.860322.
    1. Parker B.A., Smithmyer S.L., Jarvis S.S., Ridout S.J., Pawelczyk J.A., Proctor D.N. Evidence for reduced sympatholysis in leg resistance vasculature of healthy older women. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H1148–H1156. doi: 10.1152/ajpheart.00729.2006.
    1. Bode-Boger S.M., Muke J., Surdacki A., Brabant G., Boger R.H., Frolich J.C. Oral L-arginine improves endothelial function in healthy individuals older than 70 years. Vasc. Med. 2003;8:77–81. doi: 10.1191/1358863x03vm474oa.
    1. Huang J., Ladeiras D., Yu Y., Ming X.F., Yang Z. Detrimental Effects of Chronic L-Arginine Rich Food on Aging Kidney. Front. Pharmacol. 2020;11:582155. doi: 10.3389/fphar.2020.582155.
    1. Shatanawi A., Momani M.S., Al-Aqtash R., Hamdan M.H., Gharaibeh M.N. L-Citrulline Supplementation Increases Plasma Nitric Oxide Levels and Reduces Arginase Activity in Patients with Type 2 Diabetes. Front. Pharmacol. 2020;11:584669.
    1. Schwedhelm E., Maas R., Freese R., Jung D., Lukacs Z., Jambrecina A., Spickler W., Schulze F., Boger R.H. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: Impact on nitric oxide metabolism. Br. J. Clin. Pharmacol. 2008;65:51–59. doi: 10.1111/j.1365-2125.2007.02990.x.
    1. Bailey S.J., Blackwell J.R., Lord T., Vanhatalo A., Winyard P.G., Jones A.M. L-citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. J. Appl. Physiol. 2015;119:385–395. doi: 10.1152/japplphysiol.00192.2014.
    1. Morita M., Hayashi T., Ochiai M., Maeda M., Yamaguchi T., Ina K., Kuzuya M. Oral supplementation with a combination of l-citrulline and l-arginine rapidly increases plasma l-arginine concentration and enhances NO bioavailability. Biochem. Biophys. Res. Commun. 2014;454:53–57. doi: 10.1016/j.bbrc.2014.10.029.
    1. Ochiai M., Hayashi T., Morita M., Ina K., Maeda M., Watanabe F., Morishita K. Short-term effects of l-citrulline supplementation on arterial stiffness in middle-aged men. Int. J. Cardiol. 2012;155:257–261.
    1. Wong A., Alvarez-Alvarado S., Jaime S.J., Kinsey A.W., Spicer M.T., Madzima T.A., Figueroa A. Combined whole body vibration training and L-citrulline supplementation improves pressure wave reflection in obese postmenopausal women. Appl. Physiol. Nutr. Metabol. 2016;41:292–297. doi: 10.1139/apnm-2015-0465.
    1. Figueroa A., Alvarez-Alvarado S., Ormsbee M.J., Madzima T.A., Campbell J.C., Wong A. Impact of L-citrulline supplementation and whole-body vibration training on arterial stiffness and leg muscle function in obese postmenopausal women with high blood pressure. Exp. Gerontol. 2015;63:35–40. doi: 10.1016/j.exger.2015.01.046.
    1. Figueroa A., Alvarez-Alvarado S., Jaime S.J., Kalfon R. l-Citrulline supplementation attenuates blood pressure, wave reflection and arterial stiffness responses to metaboreflex and cold stress in overweight men. Br. J. Nutr. 2016;116:279–285. doi: 10.1017/S0007114516001811.
    1. Figueroa A., Trivino J.A., Sanchez-Gonzalez M.A., Vicil F. Oral L-citrulline supplementation attenuates blood pressure response to cold pressor test in young men. Am. J. Hypertens. 2010;23:12–16. doi: 10.1038/ajh.2009.195.
    1. Jaime S.J., Nagel J., Maharaj A., Fischer S.M., Schwab E., Martinson C., Radtke K., Mikat R.P., Figueroa A. L-Citrulline supplementation attenuates aortic pulse pressure and wave reflection responses to cold stress in older adults. Exp. Gerontol. 2022;159:111685. doi: 10.1016/j.exger.2021.111685.
    1. Matsuo K., Yabuki Y., Fukunaga K. Combined l-citrulline and glutathione administration prevents neuronal cell death following transient brain ischemia. Brain Res. 2017;1663:123–131. doi: 10.1016/j.brainres.2017.03.014.
    1. McKinley-Barnard S., Andre T., Morita M., Willoughby D.S. Combined L-citrulline and glutathione supplementation increases the concentration of markers indicative of nitric oxide synthesis. J. Int. Soc. Sport. Nutr. 2015;12:27. doi: 10.1186/s12970-015-0086-7.
    1. Klatsky A.L. Alcohol and cardiovascular diseases: Where do we stand today? J. Intern. Med. 2015;278:238–250. doi: 10.1111/joim.12390.
    1. Kwon C.H., Kim W., Shin J.H., Lee C.J., Kim H.C., Kang S.H., Jung M.H., Kim D.H., Lee J.H., Kim H.L., et al. Office Blood Pressure Range and Cardiovascular Events in Patients With Hypertension: A Nationwide Cohort Study in South Korea. J. Am. Heart Assoc. 2021;10:e017890. doi: 10.1161/JAHA.120.017890.
    1. Envelope S. Create a Blocked Randomisation List. Obtenido de Sealed Envelope. 2019. [(accessed on 20 June 2020)]. Available online: .
    1. Reference Values for Arterial Stiffness’ Collaboration Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010;31:2338–2350. doi: 10.1093/eurheartj/ehq165.
    1. Ras R.T., Streppel M.T., Draijer R., Zock P.L. Flow-mediated dilation and cardiovascular risk prediction: A systematic review with meta-analysis. Int. J. Cardiol. 2013;168:344–351. doi: 10.1016/j.ijcard.2012.09.047.
    1. Morita M., Sakurada M., Watanabe F., Yamasaki T., Ezaki H., Morishita K., Miyake T. Effects of oral L-citrulline supplementation on lipoprotein oxidation and endothelial dysfunction in humans with vasospastic angina. Immunol. Endocrin. Metab. Agent. Med. Chem. 2013;13:214–220. doi: 10.2174/18715222113139990008.
    1. Bai Y., Sun L., Yang T., Sun K., Chen J., Hui R. Increase in fasting vascular endothelial function after short-term oral L-arginine is effective when baseline flow-mediated dilation is low: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2009;89:77–84. doi: 10.3945/ajcn.2008.26544.
    1. Matsuzawa Y., Kwon T.G., Lennon R.J., Lerman L.O., Lerman A. Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2015;4:e002270. doi: 10.1161/JAHA.115.002270.
    1. Heiss C., Rodriguez-Mateos A., Bapir M., Skene S.S., Sies H., Kelm M. Flow-mediated dilation reference values for evaluation of endothelial function and cardiovascular health. Cardiovasc. Res. 2022;119:283–293. doi: 10.1093/cvr/cvac095.
    1. Yeboah J., Crouse J.R., Hsu F.-C., Burke G.L., Herrington D.M. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: The Cardiovascular Health Study. Circulation. 2007;115:2390–2397. doi: 10.1161/CIRCULATIONAHA.106.678276.
    1. Tirosh A., Shai I., Tekes-Manova D., Israeli E., Pereg D., Shochat T., Kochba I., Rudich A., Israeli Diabetes Research G. Normal fasting plasma glucose levels and type 2 diabetes in young men. N. Engl. J. Med. 2005;353:1454–1462. doi: 10.1056/NEJMoa050080.
    1. Su Y., Liu X.M., Sun Y.M., Jin H.B., Fu R., Wang Y.Y., Wu Y., Luan Y. The relationship between endothelial dysfunction and oxidative stress in diabetes and prediabetes. Int. J. Clin. Pract. 2008;62:877–882. doi: 10.1111/j.1742-1241.2008.01776.x.
    1. DeVan A.E., Eskurza I., Pierce G.L., Walker A.E., Jablonski K.L., Kaplon R.E., Seals D.R. Regular aerobic exercise protects against impaired fasting plasma glucose-associated vascular endothelial dysfunction with aging. Clin. Sci. 2013;124:325–331. doi: 10.1042/CS20120291.
    1. McEniery C.M., Yasmin, Hall I.R., Qasem A., Wilkinson I.B., Cockcroft J.R. Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity: The Anglo-Cardiff Collaborative Trial (ACCT) J. Am. Coll. Cardiol. 2005;46:1753–1760. doi: 10.1016/j.jacc.2005.07.037.
    1. Yamashina A., Tomiyama H., Takeda K., Tsuda H., Arai T., Hirose K., Koji Y., Hori S., Yamamoto Y. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens. Res. 2002;25:359–364. doi: 10.1291/hypres.25.359.
    1. Naka K.K., Tweddel A.C., Doshi S.N., Goodfellow J., Henderson A.H. Flow-mediated changes in pulse wave velocity: A new clinical measure of endothelial function. Eur. Heart J. 2006;27:302–309. doi: 10.1093/eurheartj/ehi619.
    1. Kamran H., Salciccioli L., Ko E.H., Qureshi G., Kazmi H., Kassotis J., Lazar J. Effect of reactive hyperemia on carotid-radial pulse wave velocity in hypertensive participants and direct comparison with flow-mediated dilation: A pilot study. Angiology. 2010;61:100–106. doi: 10.1177/0003319709335028.
    1. Kobayashi Y., Narita K., Chiba K., Takemoto H., Morita M., Morishita K. Effects of L-citrulline diet on stress-induced cold hypersensitivity in mice. Pharmacogn. Res. 2014;6:297–302. doi: 10.4103/0974-8490.138269.
    1. Choi H.M., Stebbins C.L., Nho H., Kim K.A., Kim C., Kim J.K. Skeletal muscle metaboreflex is enhanced in postmenopausal women. Eur. J. Appl. Physiol. 2012;112:2671–2678. doi: 10.1007/s00421-011-2245-0.
    1. Luiking Y.C., Ten Have G.A., Wolfe R.R., Deutz N.E. Arginine de novo and nitric oxide production in disease states. Am. J. Physiol. Endocrinol. Metab. 2012;303:E1177–E1189. doi: 10.1152/ajpendo.00284.2012.
    1. Celik M., Unal H.U. The l-Arginine/Asymmetric Dimethylarginine (ADMA) Ratio in Health and Disease: An Overview. In: Patel V.B., Preedy V.R., Rajendram R., editors. L-Arginine in Clinical Nutrition. Springer International Publishing; Cham, Switzerland: 2017. pp. 225–238.
    1. Luneburg N., Xanthakis V., Schwedhelm E., Sullivan L.M., Maas R., Anderssohn M., Riederer U., Glazer N.L., Vasan R.S., Boger R.H. Reference intervals for plasma L-arginine and the L-arginine:asymmetric dimethylarginine ratio in the Framingham Offspring Cohort. J. Nutr. 2011;141:2186–2190. doi: 10.3945/jn.111.148197.
    1. Ellger B., Richir M.C., van Leeuwen P.A., Debaveye Y., Langouche L., Vanhorebeek I., Teerlink T., Van den Berghe G. Glycemic control modulates arginine and asymmetrical-dimethylarginine levels during critical illness by preserving dimethylarginine-dimethylaminohydrolase activity. Endocrinology. 2008;149:3148–3157. doi: 10.1210/en.2007-1558.
    1. Bogle R.G., MacAllister R.J., Whitley G.S., Vallance P. Induction of NG-monomethyl-L-arginine uptake: A mechanism for differential inhibition of NO synthases? Am. J. Physiol. 1995;269:C750–C756. doi: 10.1152/ajpcell.1995.269.3.C750.
    1. Palloshi A., Fragasso G., Piatti P., Monti L.D., Setola E., Valsecchi G., Galluccio E., Chierchia S.L., Margonato A. Effect of oral L-arginine on blood pressure and symptoms and endothelial function in patients with systemic hypertension, positive exercise tests, and normal coronary arteries. Am. J. Cardiol. 2004;93:933–935. doi: 10.1016/j.amjcard.2003.12.040.
    1. Monti L.D., Casiraghi M.C., Setola E., Galluccio E., Pagani M.A., Quaglia L., Bosi E., Piatti P. L-arginine enriched biscuits improve endothelial function and glucose metabolism: A pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome. Metabolism. 2013;62:255–264. doi: 10.1016/j.metabol.2012.08.004.
    1. Blum A., Hathaway L., Mincemoyer R., Schenke W.H., Kirby M., Csako G., Waclawiw M.A., Panza J.A., Cannon R.O., III. Effects of oral L-arginine on endothelium-dependent vasodilation and markers of inflammation in healthy postmenopausal women. J. Am. Coll. Cardiol. 2000;35:271–276. doi: 10.1016/S0735-1097(99)00553-7.
    1. Esen O., Eser M.C., Abdioglu M., Benesova D., Gabrys T., Karayigit R. Eight Days of L-Citrulline or L-Arginine Supplementation Did Not Improve 200-m and 100-m Swimming Time Trials. Int. J. Environ. Res. Public Health. 2022;19:4462. doi: 10.3390/ijerph19084462.
    1. Flam B.R., Eichler D.C., Solomonson L.P. Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide. 2007;17:115–121. doi: 10.1016/j.niox.2007.07.001.
    1. Yu E., Ruiz-Canela M., Hu F.B., Clish C.B., Corella D., Salas-Salvado J., Hruby A., Fito M., Liang L., Toledo E., et al. Plasma Arginine/Asymmetric Dimethylarginine Ratio and Incidence of Cardiovascular Events: A Case-Cohort Study. J. Clin. Endocrinol. Metab. 2017;102:1879–1888. doi: 10.1210/jc.2016-3569.
    1. Campolo J., Bernardi S., Cozzi L., Rocchiccioli S., Dellanoce C., Cecchettini A., Tonini A., Parolini M., De Chiara B., Micheloni G., et al. Medium-term effect of sublingual l-glutathione supplementation on flow-mediated dilation in subjects with cardiovascular risk factors. Nutrition. 2017;38:41–47. doi: 10.1016/j.nut.2016.12.018.
    1. Allen J., Bradley R.D. Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteers. J. Altern. Complement. Med. 2011;17:827–833. doi: 10.1089/acm.2010.0716.
    1. Richie J.P., Jr., Nichenametla S., Neidig W., Calcagnotto A., Haley J.S., Schell T.D., Muscat J.E. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. Eur. J. Nutr. 2015;54:251–263. doi: 10.1007/s00394-014-0706-z.

Source: PubMed

3
S'abonner