Diagnostic and prognostic performance of the ratio between high-sensitivity cardiac troponin I and troponin T in patients with chest pain

Kai M Eggers, Ola Hammarsten, Sally J Aldous, Louise Cullen, Jaimi H Greenslade, Bertil Lindahl, William A Parsonage, Christopher J Pemberton, John W Pickering, A Mark Richards, Richard W Troughton, Martin P Than, Kai M Eggers, Ola Hammarsten, Sally J Aldous, Louise Cullen, Jaimi H Greenslade, Bertil Lindahl, William A Parsonage, Christopher J Pemberton, John W Pickering, A Mark Richards, Richard W Troughton, Martin P Than

Abstract

Background: Elevations of high-sensitivity cardiac troponin (hs-cTn) concentrations not related to type 1 myocardial infarction are common in chest pain patients presenting to emergency departments. The discrimination of these patients from those with type 1 myocardial infarction (MI) is challenging and resource-consuming. We aimed to investigate whether the hs-cTn I/T ratio might provide diagnostic and prognostic increment in this context.

Methods: We calculated the hs-cTn I/T ratio in 888 chest pain patients having hs-cTnI (Abbott Laboratories) or hs-cTnT (Roche Diagnostics) concentrations above the respective 99th percentile at 2 hours from presentation. All patients were followed for one year regarding mortality.

Results: The median hs-cTn I/T ratio was 3.45 (25th, 75th percentiles 1.80-6.59) in type 1 MI patients (n = 408 ☯46.0%]), 1.18 (0.81-1.90) in type 2 MI patients (n = 56 ☯6.3%]) and 0.67 (0.39-1.12) in patients without MI. The hs-cTn I/T ratio provided good discrimination of type 1 MI from no type 1 MI (area under the receiver-operator characteristic curve 0.89 ☯95% confidence interval 0.86-0.91]), of type 1 MI from type 2 MI (area under the curve 0.81 ☯95% confidence interval 0.74-0.87]), and was associated with type 1 MI in adjusted analyses. The hs-cTn I/T ratio provided no consistent prognostic value.

Conclusions: The hs-cTn I/T ratio appears to be useful for early diagnosis of type 1 MI and its discrimination from type 2 MI in chest pain patients presenting with elevated hs-cTn. Differences in hs-cTn I/T ratio values may reflect variations in hs-cTn release mechanisms in response to different types of myocardial injury.

Conflict of interest statement

Dr Eggers has consulted for Roche Diagnostics. Professor Cullen has consulted for Abbott Diagnostics, Siemens Healthineers and Beckman Coulter. Dr Parsonage has consulted for Abbott Diagnostics and Siemens Healthineers. Professor Cullens and Dr Parsonages institution has received research funding from Abbott Diagnostics, Siemens Healthineers and Beckman Coulter. Professor Pickering has consulted for Abbott Diagnostics. Professor Richards has consulted for and/or received grants/in-kind support from Roche Diagnostics, Abbott Laboratories and Thermo Fisher. Dr Than has consulted for Abbott Diagnostics, Radiometer, Roche Diagnostics, Siemens Healthineers and received funding from Abbott Diagnostics, Beckman Coulter and Roche Diagnostics. The authors have declared that no competing interests exist.

Figures

Fig 1. Study flowchart.
Fig 1. Study flowchart.
STEMI: ST-elevation myocardial infarction.
Fig 2. Distribution of hs-cTn I/T ratio…
Fig 2. Distribution of hs-cTn I/T ratio values.
Fig 3. Discriminative value of the hs-cTn…
Fig 3. Discriminative value of the hs-cTn I/T ratio.
A) Type 1 MI vs no type 1 MI; B) Type 1 MI vs type 2 MI. MI: myocardial infarction; AUC: area under the receiver-operator characteristic curve; CI: confidence interval.

References

    1. Hammarsten O, Mair J, Mockel M, Lindahl B, Jaffe AS. Possible mechanisms behind cardiac troponin elevations. Biomarkers. 2018:23: 725–734. doi: 10.1080/1354750X.2018.1490969
    1. Potter JD. Preparation of troponin and its subunits. Methods Enzymol. 1982;85 Pt B: 241–263. doi: 10.1016/0076-6879(82)85024-6
    1. Starnberg K, Friden V, Muslimovic A, Ricksten SE, Nyström S, Forsgard N, et al.. A Possible Mechanism behind Faster Clearance and Higher Peak Concentrations of Cardiac Troponin I Compared with Troponin T in Acute Myocardial Infarction. Clin Chem. 2020;66: 333–341. doi: 10.1093/clinchem/hvz003
    1. Solecki K, Dupuy AM, Kuster N, Leclercq F, Gervasoni R, Macia JC, et al.. Kinetics of high-sensitivity cardiac troponin T or troponin I compared to creatine kinase in patients with revascularized acute myocardial infarction. Clin Chem Lab Med. 2015;53: 707–714. doi: 10.1515/cclm-2014-0475
    1. Laugaudin G, Kuster N, Petiton A, Leclercq F, Gervasoni R, Macia JC, et al.. Kinetics of high-sensitivity cardiac troponin T and I differ in patients with ST-segment elevation myocardial infarction treated by primary coronary intervention. Eur Heart J Acute Cardiovasc Care. 2016;5: 354–363. doi: 10.1177/2048872615585518
    1. Sandoval Y, Chapman AR, Mills NL, Than M, Pickering JW, Worster A, et al.. Sex-Specific Kinetics of High-Sensitivity Cardiac Troponin I and T following Symptom Onset and Early Presentation in Non-ST-Segment Elevation Myocardial Infarction. Clin Chem. 2021;67: 321–324. doi: 10.1093/clinchem/hvaa263
    1. Omland T, Pfeffer MA, Solomon SD, de Lemos JA, Røsjø H, Benth JS, et al.. Prognostic value of cardiac troponin I measured with a highly sensitive assay in patients with stable coronary artery disease. J Am Coll Cardiol. 2013;61: 1240–1249. doi: 10.1016/j.jacc.2012.12.026
    1. Arnadottir A, Pedersen S, Bo Hasselbalch R, Goetze JP, Friis-Hansen LJ, Bloch-Münster AM, et al.. Temporal Release of High-Sensitivity Cardiac Troponin T and I and Copeptin After Brief Induced Coronary Artery Balloon Occlusion in Humans. Circulation. 2021;143: 1095–1104. doi: 10.1161/CIRCULATIONAHA.120.046574
    1. Hijazi Z, Siegbahn A, Andersson U, Lindahl B, Granger CB, Alexander JH, et al.. Comparison of cardiac troponins I and T measured with high-sensitivity methods for evaluation of prognosis in atrial fibrillation: an ARISTOTLE substudy. Clin Chem. 2015;61: 368–378. doi: 10.1373/clinchem.2014.226936
    1. Bjurman C, Petzold M, Venge P, Farbemo J, Fu ML, Hammarsten O. High-sensitive cardiac troponin, NT-proBNP, hFABP and copeptin levels in relation to glomerular filtration rates and a medical record of cardiovascular disease. Clin Biochem. 2015;48: 302–307. doi: 10.1016/j.clinbiochem.2015.01.008
    1. Bargnoux AS, Kuster N, Patrier L, Dupuy AM, Tachon G, Maurice F, et al.. Cardiovascular risk stratification in hemodialysis patients in the era of highly sensitive troponins: should we choose between hs-troponin I and hs-troponin T? Clin Chem Lab Med. 2016;54: 673–682. doi: 10.1515/cclm-2015-0071
    1. Welsh P, Preiss D, Hayward C, Shah ASV, McAllister D, Briggs A, et al.. Cardiac Troponin T and Troponin I in the General Population. Circulation. 2019;139: 2754–2764. doi: 10.1161/CIRCULATIONAHA.118.038529
    1. Than M, Cullen L, Aldous S, Parsonage WA, Reid CM, Greenslade J, et al.. 2-Hour accelerated diagnostic protocol to assess patients with chest pain symptoms using contemporary troponins as the only biomarker: the ADAPT trial. J Am Coll Cardiol. 2012;59: 2091–2098. doi: 10.1016/j.jacc.2012.02.035
    1. Pemberton CJ, Frampton CM, Aldous S, Bailey M, Young J, Troughton R, et al.. B-type natriuretic peptide signal peptide (BNPsp) in patients presenting with chest pain. Clin Biochem. 2016;49: 645–650. doi: 10.1016/j.clinbiochem.2016.02.015
    1. Pickering JW, Young JM, George PM, Watson AS, Aldous SJ, Troughton RW, et al.. Validity of a Novel Point-of-Care Troponin Assay for Single-Test Rule-Out of Acute Myocardial Infarction. JAMA Cardiol. 2018;3: 1108–1112. doi: 10.1001/jamacardio.2018.3368
    1. Than M, Aldous S, Lord SJ, Goodacre S, Frampton CM, Troughton R, et al.. A 2-hour diagnostic protocol for possible cardiac chest pain in the emergency department: a randomized clinical trial. JAMA Intern Med. 2014;174: 51–58. doi: 10.1001/jamainternmed.2013.11362
    1. Than MP, Pickering JW, Aldous SJ, Cullen L, Frampton CM, Peacock WF, et al.. Effectiveness of EDACS Versus ADAPT Accelerated Diagnostic Pathways for Chest Pain: A Pragmatic Randomized Controlled Trial Embedded Within Practice. Ann Emerg Med. 2016;68: 93–102.e1. doi: 10.1016/j.annemergmed.2016.01.001
    1. Thygesen K, Alpert JS, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. J Am Coll Cardiol. 2007;50: 2173–2195.
    1. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al.. Fourth Universal Definition of Myocardial Infarction (2018). Circulation. 2018;138: e618–e651. doi: 10.1161/CIR.0000000000000617
    1. Krintus M, Kozinski M, Boudry P, Capell NE, Köller U, Lackner K, et al.. European multicenter analytical evaluation of the Abbott ARCHITECT STAT high sensitive troponin I immunoassay. Clin Chem Lab Med. 2014;52: 1657–1665. doi: 10.1515/cclm-2014-0107
    1. Saenger AK, Beyrau R, Braun S, Cooray R, Dolci A, Freidank H, et al.. Multicenter analytical evaluation of a high-sensitivity troponin T assay. Clin Chim Acta. 2011;412: 748–754. doi: 10.1016/j.cca.2010.12.034
    1. Apple FS, Jaffe AS. Clinical implications of a recent adjustment to the high-sensitivity cardiac troponin T assay: user beware. Clin Chem. 2012;58: 1599–1600. doi: 10.1373/clinchem.2012.194985
    1. Chapman AR, Sandoval Y. Type 2 Myocardial Infarction: Evolving Approaches to Diagnosis and Risk-Stratification. Clin Chem. 2021;67: 61–69. doi: 10.1093/clinchem/hvaa189
    1. Swaanenburg JC, Visser-VanBrummen PJ, DeJongste MJ, Tiebosch AT. The content and distribution of troponin I, troponin T, myoglobin, and alpha-hydroxybutyric acid dehydrogenase in the human heart. Am J Clin Pathol. 2001;115: 770–777. doi: 10.1309/054c-qv78-mtvf-yacw
    1. Muslimovic A, Friden V, Starnberg K, Tenstad O, Espedal H, Vukusic K, et al.. Novel clearance of muscle proteins by muscle cells. Eur J Cell Biol. 2020;99: 151127. doi: 10.1016/j.ejcb.2020.151127
    1. Pickering JW, Young JM, George PM, Pemberton CJ, Watson A, Aldous SJ, et al.. Early kinetic profiles of troponin I and T measured by high-sensitivity assays in patients with myocardial infarction. Clin Chim Acta. 2020;505: 15–25. doi: 10.1016/j.cca.2020.02.009
    1. Kragten JA, Hermens WT, van Dieijen-Visser MP. Cardiac troponin T release into plasma after acute myocardial infarction: only fractional recovery compared with enzymes. Ann Clin Biochem. 1996;33: 314–323. doi: 10.1177/000456329603300406
    1. van der Linden N, Wildi K, Twerenbold R, Pickering JW, Than M, Cullen L, et al.. Combining High-Sensitivity Cardiac Troponin I and Cardiac Troponin T in the Early Diagnosis of Acute Myocardial Infarction. Circulation. 2018;138: 989–999. doi: 10.1161/CIRCULATIONAHA.117.032003
    1. Hammarsten O, Ljungqvist P, Redfors B, Wernbom M, Widing H, Lindahl B, et al.. The ratio of cardiac troponin T to troponin I may indicate non-necrotic troponin release among COVID-19 patients. Clin Chim Acta. 2022;527: 33–37. doi: 10.1016/j.cca.2021.12.030
    1. Horiuchi Y, Wettersten N, Patel MP, Mueller C, Neath SX, Christenson RH, et al.. Biomarkers Enhance Discrimination and Prognosis of Type 2 Myocardial Infarction. Circulation. 2020;142: 1532–1544.
    1. Nestelberger T, Boeddinghaus J, Lopez-Ayala P, Kaier TE, Marber M, Gysin V, et al.. Cardiovascular Biomarkers in the Early Discrimination of Type 2 Myocardial Infarction. JAMA Cardiol. 2021;6: 771–780.
    1. Wereski R, Kimenai DM, Taggart C, Doudesis D, Lee KK, Lowry MTH, et al.. Cardiac Troponin Thresholds and Kinetics to Differentiate Myocardial Injury and Myocardial Infarction. Circulation. 2021;144: 528–538. doi: 10.1161/CIRCULATIONAHA.121.054302
    1. Neumann JT, Weimann J, Sörensen NA, Hartikainen TS, Haller PM, Lehmacher J, et al.. A Biomarker Model to Distinguish Types of Myocardial Infarction and Injury. J Am Coll Cardiol. 2021;78: 781–790. doi: 10.1016/j.jacc.2021.06.027

Source: PubMed

3
S'abonner