Glycidol Fatty Acid Ester and 3-Monochloropropane-1,2-Diol Fatty Acid Ester in Commercially Prepared Foods

Yuko Shimamura, Ryo Inagaki, Minami Oike, Beibei Dong, Wan Gong, Shuichi Masuda, Yuko Shimamura, Ryo Inagaki, Minami Oike, Beibei Dong, Wan Gong, Shuichi Masuda

Abstract

Glycidyl fatty acid esters (GEs), which are the main pollutant in processed oils, are potential mutagens or carcinogens. 3-Monochloropropane-1,2-diol fatty acid esters (3-MCPDEs) are also well-known food processing contaminants. 3-MCPDEs are believed to be a precursor to GEs in foodstuffs. In vivo, lipase breaks down the phosphate ester of GEs and 3-MCPDEs to produce glycidol and 3-MCPD, respectively, which are genotoxic carcinogens. Thus, it is important to determine human exposure to GEs and 3-MCPDEs through foodstuffs. There are only reports on the amount of GE and 3-MCPDE in cooking oils and cooked foods. The content in multiple types of foods that are actually on the market was not clarified. In this study, 48 commercially prepared foods were analyzed to identify other sources of exposure to GE and 3-MCPDE. All of them contained relatively high amounts of GEs and 3-MCPDEs. The correlation between GEs and 3-MCPDEs in individual foods was examined. There was a correlation between the amounts of GEs and 3-MCPDEs in the food products (r = 0.422, p < 0.005). This is the first report on the content in multiple types of commercially prepared foods that are actually on the market was clarified.

Keywords: 3-monochloropropane-1,2-diol esters; glycidol; glycidyl fatty acid esters; processed foods.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Typical LC-MS/MS chromatogram of GEs and 3-MCPDEs standard sample. (A) GEs standard sample (1 ppm) and (B) 3-MCPDEs standard sample (1 ppm).
Figure 2
Figure 2
Plot of the amounts of GEs and 3-MCPDEs in individual food products.

References

    1. Kuhlmann J. Determination of bound 2,3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils. Eur. J. Lipid Sci. Technol. 2011;113:335–344. doi: 10.1002/ejlt.201000313.
    1. MacMahon S., Begley T.H., Diachenko G.W. Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States. Food Addit. Contam. A. 2013;30:2081–2092. doi: 10.1080/19440049.2013.840805.
    1. El Ramy R., Ould Elhkim M., Lezmi S., Poul J.M. Evaluation of the genotoxic potential of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites, glycidol and beta-chlorolactic acid, using the single cell gel/comet assay. Food Chem. Toxicol. 2007;45:41–48. doi: 10.1016/j.fct.2006.07.014.
    1. Aasa J., Vare D., Motwani H.V., Jenssen D., Törnqvist M. Quantification of the mutagenic potency and repair of glycidol-induced DNA lesions. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016;805:38–45. doi: 10.1016/j.mrgentox.2016.05.011.
    1. Honda H., Onishi M., Fujii K., Ikeda N., Yamaguchi T., Fujimori T., Nishiyama N., Kasamatsu T. Measurement of glycidol hemoglobin adducts in humans who ingest edible oil containing small amounts of glycidol fatty acid esters. Food Chem. Toxicol. 2011;49:2536–2540. doi: 10.1016/j.fct.2011.06.057.
    1. Honda H., Fujii K., Yamaguchi T., Ikeda N., Nishiyama N., Kasamatsu T. Glycidol exposure evaluation of humans who have ingested diacylglycerol oil containing glycidol fatty acid esters using hemoglobin adducts. Food Chem. Toxicol. 2012;50:4163–4168. doi: 10.1016/j.fct.2012.07.058.
    1. Inagaki R., Hirai C., Shimamura Y., Masuda S. Formation of glycidol fatty acid esters in meat samples cooked by various methods. J. Food Process. Technol. 2016;7:557–562. doi: 10.4172/2157-7110.1000557.
    1. Landin H.H., Tareke E., Rydberg P., Olsson U., Törnqvist M. Heating of food and haemoglobin adducts from carcinogens: Possible precursor role of glycidol. Food Chem. Toxicol. 2000;38:963–969. doi: 10.1016/S0278-6915(00)00093-4.
    1. Sun J., Bai S., Bai W., Zou F., Zhang L., Su Z., Zhang Q., Ou S., Huang Y. Toxic mechanisms of 3-monochloropropane-1, 2-diol on progesterone production in R2C rat leydig cells. J. Agric. Food Chem. 2013;61:9955–9960. doi: 10.1021/jf400809r.
    1. Zelinková Z., Svejkovská B., Velíšek J., Doležal M. Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit. Contam. 2006;23:1290–1298. doi: 10.1080/02652030600887628.
    1. Küsters M., Bimber U., Reeser S., Gallitzendörfer R., Gerhartz M. Simultaneous determination and differentiation of glycidyl esters and 3-Monochloropropane-1,2-diol (MCPD) esters in different foodstuffs by GC–MS. J. Agric. Food Chem. 2011;59:6263–6270. doi: 10.1021/jf200493b.
    1. Zelinková Z., Doležal M., Velíšek J. Occurrence of 3-chloropropane-1,2-diol fatty acid esters in infant and baby foods. Eur. Food Res. Technol. 2008;228:571–578. doi: 10.1007/s00217-008-0965-0.
    1. Xu L., Zhang Y., Gong M., Huang J., Jin Q., Wang X., Wang X. Change of fatty acid esters of MCPD and glycidol during restaurant deep frying of fish nuggets and their correlations with total polar compounds. Int. J. Food Sci. Technol. 2020;55:2794–2801. doi: 10.1111/ijfs.14532.
    1. Wong Y.H., Goh K.M., Nyam K.L., Cheong L.Z., Wang Y., Nehdi I.A., Mansour L., Tan C.P. Monitoring of heat-induced carcinogenic compounds (3-monochloropropane-1, 2-diol esters and glycidyl esters) in fries. Sci. Rep. 2020;10:15110. doi: 10.1038/s41598-020-72118-z.
    1. Frank P., Patrick B., Peer F., Anne F., Bertrand M., Andrea S. On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. Eur. J. Lipid Sci. Technol. 2011;113:368–373. doi: 10.1002/ejlt.201000460.
    1. Aniołowska M., Kita A. Monitoring of glycidyl fatty acid esters in refined vegetable oils from retail outlets by LC–MS. J. Sci. Food. Agric. 2016;96:4056–4061. doi: 10.1002/jsfa.7603.
    1. Wong Y.H., Muhamad H., Abas F., Lai O.M., Nyam K.L., Tan C.P. Effects of temperature and NaCl on the formation of 3-MCPD esters and glycidyl esters in refined, bleached and deodorized palm olein during deep-fat frying of potato chips. Food Chem. 2017;219:126–130. doi: 10.1016/j.foodchem.2016.09.130.
    1. Shimizu M., Weitkamp P., Vosmann K., Matthäus B. Temperature dependency when generating glycidyl and 3-MCPD esters from diolein. J. Am. Oil Chem. Soc. 2013;90:1449–1454. doi: 10.1007/s11746-013-2298-9.
    1. Ermacora A., Hrncirik K. Study on the thermal degradation of 3-MCPD esters in model systems simulating deodorization of vegetable oils. Food Chem. 2014;150:158–163. doi: 10.1016/j.foodchem.2013.10.063.
    1. Kamikata K., Vicente E., Arisseto-Bragotto A.P., de Oliveira Miguel A.M.R., Milani R.F., Tfouni S.A.V. Occurrence of 3-MCPD, 2-MCPD and glycidyl esters in extra virgin olive oils, olive oils and oil blends and correlation with identity and quality parameters. Food Control. 2019;95:135–141. doi: 10.1016/j.foodcont.2018.07.051.
    1. Destaillats F., Craft B.D., Sandoz L., Nagy K. Formation mechanisms of monochloropropanediol (MCPD) fatty acid diesters in refined palm (Elaeis guineensis) oil and related fractions. Food Addit. Contam. A. 2012;29:29–37. doi: 10.1080/19440049.2011.633493.
    1. Destaillats F., Craft B.D., Dubois M., Nagy K. Glycidyl esters in refined palm (Elaeis guineensis) oil and related fractions. Part I: Formation mechanism. Food Chem. 2012;131:1391–1398. doi: 10.1016/j.foodchem.2011.10.006.
    1. Long K., Jamari M.A., Ishak A., Yeok L.J., Latif R.A., Lai O.M. Physico-chemical properties of palm olein fractions as a function of diglyceride content in the starting material. Eur. J. Lipid Sci. Technol. 2005;107:754–761. doi: 10.1002/ejlt.200401129.
    1. Siew W.L., Ng W.L. Diglyceride content and composition as indicators of palm oil quality. J. Sci. Food Agric. 1995;69:73–79. doi: 10.1002/jsfa.2740690112.
    1. Siew W.L., Ng W.L. Influence of diglycerides on crystallisation of palm oil. J. Sci. Food Agric. 1999;79:722–726. doi: 10.1002/(SICI)1097-0010(199904)79:5<722::AID-JSFA242>;2-W.
    1. Aasa J., Vryonidis E., Abramsson-Zetterberg L., Törnqvist M. Internal doses of glycidol in children and estimation of associated cancer risk. Toxics. 2019;7:7. doi: 10.3390/toxics7010007.
    1. Monien B.H., Abraham K., Nawrot T.S., Hogervorst J.G.F. Levels of the hemoglobin adduct N-(2, 3-Dihydroxypropyl)-valine in cord and maternal blood: Prenatal transfer of glycidol in the ENVIRONAGE birth cohort. Toxicol. Lett. 2020;332:82–87. doi: 10.1016/j.toxlet.2020.06.013.

Source: PubMed

3
S'abonner