Glycemic Responses of Milk and Plant-Based Drinks: Food Matrix Effects

Blerina Shkembi, Thom Huppertz, Blerina Shkembi, Thom Huppertz

Abstract

The consumption of food items containing digestible carbohydrates in food products leads to postprandial increases in blood glucose levels and glycemic responses. The extent to which these occur depends on many factors, including concentration and type of carbohydrate, but also other physicochemical properties of the food matrix, which determine the rate of uptake of monosaccharides into the bloodstream, including product structure and factors affecting gastric emptying. For milk, control of postprandial glycemic responses appears to be multifaceted, including a controlled rate of gastric emptying, a rate of glucose and galactose uptake into the bloodstream controlled by enzymatic hydrolysis, as well as stimulated insulin secretion to enhance uptake of blood glucose from the bloodstream. Altogether, this allows milk to deliver comparatively high levels of carbohydrate with limited glycemic responses. For plant-based drinks positioned as milk alternatives, however, compositional differences (including carbohydrate type and concentration) as well as matrix factors limiting control over gastric emptying and insulin secretion can, in some cases, lead to much stronger glycemic responses, which are undesirable in relation to non-communicable diseases, such as type-2 diabetes. This review discusses glycemic responses to milk and plant-based drinks from this perspective, focusing on mechanistic insights and food matrix effects.

Keywords: carbohydrates; dairy products; food matrix; glycemic index; glycemic load; metabolism; plant-based drinks; postprandial glycemic response.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Schematic outline of postprandial glucose metabolism.

References

    1. van Rossum C.T.M., Buurma-Rethans E.J.M., Dinnissen C.S., Beukers M.H., Brants H.A.M., Dekkers A.L.M., Ocké M.C. The Diet of the Dutch: Results of the Dutch National Food Consumption Survey 2012–2016. National Institute for Public Health and the Environment RIVM; Bilthoven, The Netherlands: 2020.
    1. Huppertz T. Understanding and Improving the Functional and Nutritional Properties of Milk. Burleigh Dodds Science Publishing Limited; Cambridge, UK: 2022. Lactose in Milk: Properties, Nutritional Characteristics and Role in Dairy Products.
    1. Romero-Velarde E., Delgado-Franco D., García-Gutiérrez M., Gurrola-Díaz C., Larrosa-Haro A., Montijo-Barrios E., Muskiet F.A.J., Vargas-Guerrero B., Geurts J. The Importance of Lactose in the Human Diet: Outcomes of a Mexican Consensus Meeting. Nutrients. 2019;11:2737. doi: 10.3390/nu11112737.
    1. McClements D.J., Newman E., McClements I.F. Plant-Based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019;18:2047–2067. doi: 10.1111/1541-4337.12505.
    1. Bocker R., Silva E.K. Innovative Technologies for Manufacturing Plant-Based Non-Dairy Alternative Milk and Their Impact on Nutritional, Sensory and Safety Aspects. Future Foods. 2022;5:100098. doi: 10.1016/j.fufo.2021.100098.
    1. Drewnowski A., Henry C.J., Dwyer J.T. Proposed Nutrient Standards for Plant-Based Beverages Intended as Milk Alternatives. Front. Nutr. 2021;8:761442. doi: 10.3389/fnut.2021.761442.
    1. Jeske S., Zannini E., Arendt E.K. Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant Foods Hum. Nutr. 2017;72:26–33. doi: 10.1007/s11130-016-0583-0.
    1. Smith N.W., Dave A.C., Hill J.P., McNabb W.C. Nutritional Assessment of Plant-Based Beverages in Comparison to Bovine Milk. Front. Nutr. 2022;9:957486. doi: 10.3389/fnut.2022.957486.
    1. Augustin L.S.A., Kendall C.W.C., Jenkins D.J.A., Willett W.C., Astrup A., Barclay A.W., Björck I., Brand-Miller J.C., Brighenti F., Buyken A.E., et al. Glycemic Index, Glycemic Load and Glycemic Response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC) Nutr. Metab. Cardiovasc. Dis. 2015;25:795–815. doi: 10.1016/j.numecd.2015.05.005.
    1. Blaak E.E., Antoine J.M., Benton D., Björck I., Bozzetto L., Brouns F., Diamant M., Dye L., Hulshof T., Holst J.J., et al. Impact of Postprandial Glycaemia on Health and Prevention of Disease. Obes. Rev. 2012;13:923–984. doi: 10.1111/j.1467-789X.2012.01011.x.
    1. Nakrani M.N., Wineland R.H., Anjum F. Physiology, Glucose Metabolism. StatPearls Publishing; Tampa, FL, USA: 2021.
    1. American Diabetes Association Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2006;29:S43. doi: 10.2337/diacare.29.s1.06.s43.
    1. World Health Organization . Classification of Diabetes Mellitus. World Health Organization; Geneva, Switzerland: 2019.
    1. Ceriello A., Colagiuri S. International Diabetes Federation Guideline for Management of Postmeal Glucose: A Review of Recommendations. Diabet. Med. 2008;25:1151–1156. doi: 10.1111/j.1464-5491.2008.02565.x.
    1. Aronoff S.L., Berkowitz K., Shreiner B., Want L. Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectr. 2004;17:183–190. doi: 10.2337/diaspect.17.3.183.
    1. Maas A.H., Rozendaal Y.J.W., Van Pul C., Hilbers P.A.J., Cottaar W.J., Haak H.R., Van Riel N.A.W. A Physiology-Based Model Describing Heterogeneity in Glucose Metabolism: The Core of the Eindhoven Diabetes Education Simulator (E-DES) J. Diabetes Sci. Technol. 2015;9:282–292. doi: 10.1177/1932296814562607.
    1. Rozendaal Y.J., Maas A.H., van Pul C., Cottaar E.J., Haak H.R., Hilbers P.A., van Riel N.A. Model-Based Analysis of Postprandial Glycemic Response Dynamics for Different Types of Food. Clin. Nutr. Exp. 2018;19:32–45. doi: 10.1016/j.yclnex.2018.01.003.
    1. Maggs D., Macdonald I., Nauck M.A. Glucose Homeostasis and the Gastrointestinal Tract: Insights into the Treatment of Diabetes. Diabetes Obes. Metab. 2007;10:18–33. doi: 10.1111/j.1463-1326.2007.00737.x.
    1. Goyal R.K., Cristofaro V., Sullivan M.P. Rapid Gastric Emptying in Diabetes Mellitus: Pathophysiology and Clinical Importance. J. Diabetes Complicat. 2019;33:107414. doi: 10.1016/j.jdiacomp.2019.107414.
    1. Marroquí L., Alonso-Magdalena P., Merino B., Fuentes E., Nadal A., Quesada I. Nutrient Regulation of Glucagon Secretion: Involvement in Metabolism and Diabetes. Nutr. Res. Rev. 2014;27:48–62. doi: 10.1017/S0954422414000031.
    1. Quesada I., Tudurí E., Ripoll C., Nadal Á. Physiology of the Pancreatic α-Cell and Glucagon Secretion: Role in Glucose Homeostasis and Diabetes. J. Endocrinol. 2008;199:5–19. doi: 10.1677/JOE-08-0290.
    1. Ramnanan C.J., Edgerton D.S., Kraft G., Cherrington A.D. Physiologic Action of Glucagon on Liver Glucose Metabolism. Diabetes Obes. Metab. 2011;13:118–125. doi: 10.1111/j.1463-1326.2011.01454.x.
    1. Rui L. Energy Metabolism in the Liver. Compr. Physiol. 2014;4:177–197. doi: 10.1002/cphy.c130024.
    1. Pessin J.E., Saltiel A.R. Signaling Pathways in Insulin Action: Molecular Targets of Insulin Resistance. J. Clin. Investig. 2000;106:165–169. doi: 10.1172/JCI10582.
    1. Gautier J.F., Choukem S.P., Girard J. Physiology of Incretins (GIP and GLP-1) and Abnormalities in Type 2 Diabetes. Diabetes Metab. 2008;34:S65–S72. doi: 10.1016/S1262-3636(08)73397-4.
    1. Seino Y., Fukushima M., Yabe D. GIP and GLP-1, the Two Incretin Hormones: Similarities and Differences. J. Diabetes Investig. 2010;1:8–23. doi: 10.1111/j.2040-1124.2010.00022.x.
    1. Mudaliar S., Henry R.R. The Incretin Hormones: From Scientific Discovery to Practical Therapeutics. Diabetologia. 2012;55:1865–1868. doi: 10.1007/s00125-012-2561-x.
    1. van Ginneken V. Are There Any Biomarkers of Aging? Biomarkers of the Brain. Biomed. J. Sci. Tech. Res. 2017;1:2017. doi: 10.26717/BJSTR.2017.01.000151.
    1. Wolever T.M.S., Bolognesi C. Source and Amount of Carbohydrate Affect Postprandial Glucose and Insulin in Normal Subjects. J. Nutr. 1996;126:2798–2806. doi: 10.1093/jn/126.11.2798.
    1. Jenkins D.J.A., Wolever T.M.S., Taylor R.H., Barker H., Fielden H., Baldwin J.M., Bowling A.C., Newman H.C., Goff D.V. Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange. Am. J. Clin. Nutr. 1981;34:362–366. doi: 10.1093/ajcn/34.3.362.
    1. Carbohydrates in Human Nutrition . FAO Food and Nutrition Paper. Vol. 66. FAO; Rome, Italy: 1998. Report of a Joint FAO/WHO Expert Consultation; pp. 1–140.
    1. Brouns F., Bjorck I., Frayn K.N., Gibbs A.L., Lang V., Slama G., Wolever T.M.S. Glycaemic Index Methodology. Nutr. Res. Rev. 2005;18:145–171. doi: 10.1079/NRR2005100.
    1. Dickinson S., Colagiuri S., Faramus E., Petocz P., Brand-Miller J.C. Postprandial Hyperglycemia and Insulin Sensitivity Differ among Lean Young Adults of Different Ethnicities. J. Nutr. 2002;132:2574–2579. doi: 10.1093/jn/132.9.2574.
    1. Kataoka M., Venn B.J., Williams S.M., Te Morenga L.A., Heemels I.M., Mann J.I. Glycaemic Responses to Glucose and Rice in People of Chinese and European Ethnicity. Diabet. Med. 2013;30:e101–e107. doi: 10.1111/dme.12080.
    1. Wolever T.M.S., Jenkins A.L., Vuksan V., Campbell J. The Glycaemic Index Values of Foods Containing Fructose Are Affected by Metabolic Differences between Subjects. Eur. J. Clin. Nutr. 2009;63:1106–1114. doi: 10.1038/ejcn.2009.30.
    1. Venn B.J., Williams S.M., Mann J.I. Comparison of Postprandial Glycaemia in Asians and Caucasians. Diabet. Med. 2010;27:1205–1208. doi: 10.1111/j.1464-5491.2010.03069.x.
    1. Henry C.J.K., Lightowler H.J., Newens K., Sudha V., Radhika G., Sathya R.M., Mohan V. Glycaemic Index of Common Foods Tested in the UK and India. British. J. Nutr. 2008;99:840–845. doi: 10.1017/S0007114507831801.
    1. Chan H.M.S., Brand-Miller J.C., Holt S.H.A., Wilson D., Rozman M., Petocz P. The Glycaemic Index Values of Vietnamese Foods. Eur. J. Clin. Nutr. 2001;55:1076–1083. doi: 10.1038/sj.ejcn.1601265.
    1. Venn B.J., Green T.J. Glycemic Index and Glycemic Load: Measurement Issues and Their Effect on Diet–Disease Relationships. Eur. J. Clin. Nutr. 2007;61:S122–S131. doi: 10.1038/sj.ejcn.1602942.
    1. Atkinson F.S., Foster-Powell K., Brand-Miller J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care. 2008;31:2281–2283. doi: 10.2337/dc08-1239.
    1. Eleazu C.O. The Concept of Low Glycemic Index and Glycemic Load Foods as Panacea for Type 2 Diabetes Mellitus; Prospects, Challenges and Solutions. Afr. Health. Sci. 2016;16:468–479. doi: 10.4314/ahs.v16i2.15.
    1. Wolever T.M.S. Yogurt Is a Low-Glycemic Index Food. J. Nutr. 2017;147:1462S–1467S. doi: 10.3945/jn.116.240770.
    1. Chang K.T., Lampe J.W., Schwarz Y., Breymeyer K.L., Noar K.A., Song X., Neuhouser M.L. Low Glycemic Load Experimental Diet More Satiating than High Glycemic Load Diet. Nutr. Cancer. 2012;64:666–673. doi: 10.1080/01635581.2012.676143.
    1. Ojo O., Ojo O.O., Adebowale F., Wang X.H. The Effect of Dietary Glycaemic Index on Glycaemia in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2018;10:373. doi: 10.3390/nu10030373.
    1. Wolever T.M.S. Is Glycaemic Index (GI) a Valid Measure of Carbohydrate Quality? Eur. J. Clin. Nutr. 2013;67:522–531. doi: 10.1038/ejcn.2013.27.
    1. McQuilken S.A. Digestion and Absorption. Anaesth. Intensive Care Medic. 2021;22:336–338. doi: 10.1016/j.mpaic.2020.12.009.
    1. Hall J.E. Guyton and Hall Textbook of Medical Physiology. 12th ed. Saunders; Philadelphia, PA, USA: 2011.
    1. Dashty M. A Quick Look at Biochemistry: Carbohydrate Metabolism. Clin. Biochem. 2013;46:1339–1352. doi: 10.1016/j.clinbiochem.2013.04.027.
    1. Goodman B.E. Insights into Digestion and Absorption of Major Nutrients in Humans. Am. J. Physiol. 2010;34:44–53. doi: 10.1152/advan.00094.2009.
    1. Sitrin M.D. The Gastrointestinal System: Gastrointestinal, Nutritional and Hepatobiliary Physiology. Springer; Dordrecht, The Netherlands: 2014. Digestion and Absorption of Carbohydrates and Proteins.
    1. Holmes R. Carbohydrate Digestion and Absorption. J. Clin. Pathol. 1971;s3-5:10–13. doi: 10.1136/jcp.s3-5.1.10.
    1. MacFarlane N.G. Digestion and Absorption. Anaesth. Intensive Care Medic. 2018;19:125–127. doi: 10.1016/j.mpaic.2018.01.001.
    1. Adeva-Andany M.M., Pérez-Felpete N., Fernández-Fernández C., Donapetry-García C., Pazos-García C. Liver Glucose Metabolism in Humans. Biosci. Rep. 2016;36:e00416. doi: 10.1042/BSR20160385.
    1. Hantzidiamantis P.J., Lappin S.L. StatPearls Publishing; Tampa, FL, USA: 2019. Physiology, Glucose.
    1. Aston L.M., Gambell J.M., Lee D.M., Bryant S.P., Jebb S.A. Determination of the Glycaemic Index of Various Staple Carbohydrate-Rich Foods in the UK Diet. Eur. J. Clin. Nutr. 2008;62:279–285. doi: 10.1038/sj.ejcn.1602723.
    1. Mackie A.R., Bajka B.H., Rigby N.M., Wilde P.J., Alves-Pereira F., Mosleth E.F., Rieder A., Kirkhus B., Salt L.J. Oatmeal Particle Size Alters Glycemic Index but Not as a Function of Gastric Emptying Rate. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;313:G239–G246. doi: 10.1152/ajpgi.00005.2017.
    1. Collier G., McLean A., O’Dea K. Effect of Co-Ingestion of Fat on the Metabolic Responses to Slowly and Rapidly Absorbed Carbohydrates. Diabetologia. 1984;26:50–54. doi: 10.1007/BF00252263.
    1. Moghaddam E., Vogt J.A., Wolever T.M.S. The Effects of Fat and Protein on Glycemic Responses in Nondiabetic Humans Vary with Waist Circumference, Fasting Plasma Insulin, and Dietary Fiber Intake. J. Nutr. 2006;136:2506–2511. doi: 10.1093/jn/136.10.2506.
    1. Nuttall F.Q., Mooradian A.D., Gannon M.C., Billington C.J., Krezowski P. Effect of Protein Ingestion on the Glucose and Insulin Response to a Standardized Oral Glucose Load. Diabetes Care. 1984;7:465–470. doi: 10.2337/diacare.7.5.465.
    1. Liu W., Jin Y., Wilde P.J., Hou Y., Wang Y., Han J. Mechanisms, Physiology, and Recent Research Progress of Gastric Emptying. Crit. Rev. Food Sci. Nutr. 2021;61:2742–2755. doi: 10.1080/10408398.2020.1784841.
    1. Thorning T.K., Bertram H.C., Bonjour J.P., De Groot L., Dupont D., Feeney E., Ipsen R., Lecerf J.M., Mackie A., McKinley M.C., et al. Whole Dairy Matrix or Single Nutrients in Assessment of Health Effects: Current Evidence and Knowledge Gaps. Am. J. Clin. Nutr. 2017;105:1033–1045. doi: 10.3945/ajcn.116.151548.
    1. Aguilera J.M. The Food Matrix: Implications in Processing, Nutrition and Health. Crit. Rev. Food Sci. Nutr. 2019;59:3612–3629. doi: 10.1080/10408398.2018.1502743.
    1. Capuano E., Janssen A.E.M. Food Matrix and Macronutrient Digestion. Annu. Rev. Food Sci. Technol. 2021;12:193–212. doi: 10.1146/annurev-food-032519-051646.
    1. Kjølbæk L., Schmidt J.M., Rouy E., Jensen K.J., Astrup A., Bertram H.C., Hammershøj M., Raben A. Matrix Structure of Dairy Products Results in Different Postprandial Lipid Responses: A Randomized Crossover Trial. Am. J. Clin. Nutr. 2021;114:1729–1742. doi: 10.1093/ajcn/nqab220.
    1. Feeney E.L., Barron R., Dible V., Hamilton Z., Power Y., Tanner L., Flynn C., Bouchier P., Beresford T., Noronha N., et al. Dairy Matrix Effects: Response to Consumption of Dairy Fat Differs When Eaten within the Cheese Matrix—A Randomized Controlled Trial. Am. J. Clin. Nutr. 2018;108:667–674. doi: 10.1093/ajcn/nqy146.
    1. Pennings B., Groen B.B.L., Van Dijk J.W., De Lange A., Kiskini A., Kuklinski M., Senden J.M.G., Van Loon L.J.C. Minced Beef Is More Rapidly Digested and Absorbed than Beef Steak, Resulting in Greater Postprandial Protein Retention in Older Men. Am. J. Clin. Nutr. 2013;98:121–128. doi: 10.3945/ajcn.112.051201.
    1. Horstman A.M.H., Ganzevles R.A., Kudla U., Kardinaal A.F.M., van den Borne J.J.G.C., Huppertz T. Postprandial Blood Amino Acid Concentrations in Older Adults after Consumption of Dairy Products: The Role of the Dairy Matrix. Int. Dairy. J. 2021;113:104890. doi: 10.1016/j.idairyj.2020.104890.
    1. Shkembi B., Huppertz T. Calcium Absorption from Food Products: Food Matrix Effects. Nutrients. 2021;14:180. doi: 10.3390/nu14010180.
    1. Shkembi B., Huppertz T. Influence of Dairy Products on Bioavailability of Zinc from Other Food Products: A Review of Complementarity at a Meal Level. Nutrients. 2021;13:4253. doi: 10.3390/nu13124253.
    1. Haber G.B., Heaton K.W., Murphy D., Burroughs L.F. Depletion and Disruption of Dietary Fibre. Lancet. 1977;310:679–682. doi: 10.1016/S0140-6736(77)90494-9.
    1. Bolton R.P., Heaton K.W., Burroughs L.F. The Role of Dietary Fiber in Satiety, Glucose, and Insulin: Studies with Fruit and Fruit Juice. Am. J. Clin. Nutr. 1981;34:211–217. doi: 10.1093/ajcn/34.2.211.
    1. Tey S.L., Lee D.E.M., Henry C.J. Fruit Form Influences Postprandial Glycemic Response in Elderly and Young Adults. J. Nutr. Health Aging. 2017;21:887–891. doi: 10.1007/s12603-017-0880-9.
    1. Jenkins D.J., Wolever T.M., Taylor R.H., Griffiths C., Krzeminska K., Lawrie J.A., Bennett C.M., Goff D.V., Sarson D.L., Bloom S.R. Slow Release Dietary Carbohydrate Improves Second Meal Tolerance. Am. J. Clin. Nutr. 1982;35:1339–1346. doi: 10.1093/ajcn/35.6.1339.
    1. Reynolds A.N., Mann J., Elbalshy M., Mete E., Robinson C., Oey I., Silcock P., Downes N., Perry T., Te Morenga L. Wholegrain Particle Size Influences Postprandial Glycemia in Type 2 Diabetes: A Randomized Crossover Study Comparing Four Wholegrain Breads. Diabetes Care. 2020;43:476–479. doi: 10.2337/dc19-1466.
    1. Jenkins D.J.A., Thorne M.J., Wolever T.M.S., Rao A.V., Thompson L.U. The Effect of Starch-Protein Interaction in Wheat on the Glycemic Response and Rate of in Vitro Digestion. Am. J. Clin. Nutr. 1987;45:946–951. doi: 10.1093/ajcn/45.5.946.
    1. Damodaran S., Parkin K.L., Fennema O.R. Fennema’s Food Chemistry. 4th ed. CRC press; Boca Raton, FL, USA: 2007.
    1. Touger-Decker R., van Loveren C. Sugars and Dental Caries. Am. J. Clin. Nutr. 2003;78:881S–892S. doi: 10.1093/ajcn/78.4.881S.
    1. Giacaman R.A. Sugars and beyond. The Role of Sugars and the Other Nutrients and Their Potential Impact on Caries. Oral Dis. 2017;24:1185–1197. doi: 10.1111/odi.12778.
    1. Aimutis W.R. Lactose Cariogenicity with an Emphasis on Childhood Dental Caries. Int. Dairy J. 2012;22:152–158. doi: 10.1016/j.idairyj.2011.10.007.
    1. Chen Y.Y.M., Betzenhauser M.J., Snyder J.A., Burne R.A. Pathways for Lactose/Galactose Catabolism by Streptococcus Salivarius. FEMS Microbiol. Lett. 2002;209:72–76. doi: 10.1016/S0378-1097(02)00472-X.
    1. Woodward M., Rugg-Gunn A.J. Milk, Yoghurts and Dental Caries. Impact Nutr. Diet Oral Health. 2020;28:77–90.
    1. Gille D., Walther B., Badertscher R., Bosshart A., Brügger C., Brühlhart M., Gauch R., Noth P., Vergères G., Egger L. Detection of Lactose in Products with Low Lactose Content. Int. Dairy. J. 2018;83:17–19. doi: 10.1016/j.idairyj.2018.03.003.
    1. Gray G.M., Santiago N.A. Disaccharide Absorption in Normal and Diseased Human Intestine. Gastroenterology. 1966;51:489–498. doi: 10.1016/S0016-5085(19)34364-1.
    1. Gray G.M. Carbohydrate Digestion and Absorption. Gastroenterology. 1970;58:96–107. doi: 10.1016/S0016-5085(70)80098-1.
    1. Henry C.J.K., Lightowler H.J., Strik C.M., Renton H., Hails S. Glycaemic Index and Glycaemic Load Values of Commercially Available Products in the UK. Br. J. Nutr. 2005;94:922–930. doi: 10.1079/BJN20051594.
    1. Hoyt G., Hickey M.S., Cordain L. Dissociation of the Glycaemic and Insulinaemic Responses to Whole and Skimmed Milk. Br. J. Nutr. 2005;93:175–177. doi: 10.1079/BJN20041304.
    1. Östman E.M., Liljeberg Elmståhl H.G.M., Björck I.M.E. Inconsistency between Glycemic and Insulinemic Responses to Regular and Fermented Milk Products. Am. J. Clin. Nutr. 2001;74:96–100. doi: 10.1093/ajcn/74.1.96.
    1. Anafy A., Moran-Lev H., Shapira N., Priel M., Oren A., Mangel L., Mandel D., Lubetzky R. The Glycemic Response to Infant Formulas: A Randomized Clinical Trial. Nutrients. 2022;14:1064. doi: 10.3390/nu14051064.
    1. Choi H.K., Willett W.C., Stampfer M.J., Rimm E., Hu F.B. Dairy Consumption and Risk of Type 2 Diabetes Mellitus in Men: A Prospective Study. Arch. Intern. Med. 2005;165:997–1003. doi: 10.1001/archinte.165.9.997.
    1. Salas-Salvadó J., Guasch-Ferré M., Díaz-López A., Babio N. Yogurt and Diabetes: Overview of Recent Observational Studies. J. Nutr. 2017;147:1452S–1461S. doi: 10.3945/jn.117.248229.
    1. Chen M., Sun Q., Giovannucci E., Mozaffarian D., Manson J.A.E., Willett W.C., Hu F.B. Dairy Consumption and Risk of Type 2 Diabetes: 3 Cohorts of US Adults and an Updated Meta-Analysis. BMC Med. 2014;12:215. doi: 10.1186/s12916-014-0215-1.
    1. Hidayat K., Du X., Shi B.M. Milk in the Prevention and Management of Type 2 Diabetes: The Potential Role of Milk Proteins. Diabetes Metab. Res. Rev. 2019;35:e3187. doi: 10.1002/dmrr.3187.
    1. Boirie Y., Dangin M., Gachon P., Vasson M.P., Maubois J.L., Beaufrère B. Slow and Fast Dietary Proteins Differently Modulate Postprandial Protein Accretion. Proc. Natl. Acad. Sci. USA. 1997;94:14930–14935. doi: 10.1073/pnas.94.26.14930.
    1. Horstman A.M.H., Huppertz T. Milk Proteins: Processing, Gastric Coagulation, Amino Acid Availability and Muscle Protein Synthesis. Crit. Rev. Food Sci. Nutr. 2022;62:1–16. doi: 10.1080/10408398.2022.2078782.
    1. Nouri M., Pourghassem Gargari B., Tajfar P., Tarighat-Esfanjani A. A Systematic Review of Whey Protein Supplementation Effects on Human Glycemic Control: A Mechanistic Insight. Diabetes Metab. Syndr. Clin. Res. Rev. 2022;16:102540. doi: 10.1016/j.dsx.2022.102540.
    1. Chiang S.-W., Liu H.-W., Loh E.-W., Tam K.-W., Wang J.-Y., Huang W.-L., Kuan Y.-C. Whey Protein Supplementation Improves Postprandial Glycemia in Persons with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Res. Rev. 2022;104:44–54. doi: 10.1016/j.nutres.2022.04.002.
    1. Smith K., Taylor G.S., Brunsgaard L.H., Walker M., Bowden Davies K.A., Stevenson E.J., West D.J. Thrice Daily Consumption of a Novel, Premeal Shot Containing a Low Dose of Whey Protein Increases Time in Euglycemia during 7 Days of Free-Living in Individuals with Type 2 Diabetes. BMJ Open Diabetes Res. Care. 2022;104:44–54. doi: 10.1136/bmjdrc-2022-002820.
    1. Gao K.P., Mitsui T., Fujiki K., Ishiguro H., Kondo T. Effect of Lactase Preparations in Asymptomatic Individuals with Lactase Deficiency--Gastric Digestion of Lactose and Breath Hydrogen Analysis. Nagoya J. Med. Sci. 2002;65:21–28.
    1. Huppertz T. Yogurt in Health and Disease Prevention. Academic Press; Cambridge, MA, USA: 2017. Lactose in Yogurt; pp. 387–394.
    1. Buchheim W. Influences of Different Technological Treatments of Milk on the Digestion in the Stomach. IV. Electron Microscopical Characterization of the Coagulum and of Lipolytic Processes in the Stomach. Milchwissenschaft. 1984;19:271–275.
    1. Pfeil R. Influence of Different Technological Treatments of Milk on the Digestion in the Stomach. III. Proteolysis in the Stomach. Milchwissenschaft. 1984;39:267–270.
    1. Walstra P., Walstra P., Wouters J.T.M., Geurts T.J. Dairy Science and Technology. CRC press; Boca Raton, FL, USA: 2005.
    1. Pedersen M.G.B., Søndergaard E., Nielsen C.B., Johannsen M., Gormsen L.C., Møller N., Jessen N., Rittig N. Oral Lactate Slows Gastric Emptying and Suppresses Appetite in Young Males. Clin. Nutr. 2022;41:517–525. doi: 10.1016/j.clnu.2021.12.032.
    1. Chalupa-Krebzdak S., Long C.J., Bohrer B.M. Nutrient Density and Nutritional Value of Milk and Plant-Based Milk Alternatives. Int. Dairy J. 2018;87:84–92. doi: 10.1016/j.idairyj.2018.07.018.
    1. McCarthy K.S., Parker M., Ameerally A., Drake S.L., Drake M.A. Drivers of Choice for Fluid Milk versus Plant-Based Alternatives: What Are Consumer Perceptions of Fluid Milk? J. Dairy Sci. 2017;100:6125–6138. doi: 10.3168/jds.2016-12519.
    1. Scholz-Ahrens K.E., Ahrens F., Barth C.A. Nutritional and Health Attributes of Milk and Milk Imitations. Eur. J. Nutr. 2020;59:19–34. doi: 10.1007/s00394-019-01936-3.
    1. Clegg M.E., Tarrado Ribes A., Reynolds R., Kliem K., Stergiadis S. A Comparative Assessment of the Nutritional Composition of Dairy and Plant-Based Dairy Alternatives Available for Sale in the UK and the Implications for Consumers’ Dietary Intakes. Food Res. Int. 2021;148:110586. doi: 10.1016/j.foodres.2021.110586.
    1. Tangyu M., Muller J., Bolten C.J., Wittmann C. Fermentation of Plant-Based Milk Alternatives for Improved Flavour and Nutritional Value. Appl. Microbiol. Biotechnol. 2019;103:9263–9275. doi: 10.1007/s00253-019-10175-9.
    1. Silva A.R.A., Silva M.M.N., Ribeiro B.D. Health Issues and Technological Aspects of Plant-Based Alternative Milk. Food Res. Int. 2020;131:108972. doi: 10.1016/j.foodres.2019.108972.
    1. McClements D.J. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles. Foods. 2020;9:421. doi: 10.3390/foods9040421.
    1. Paul A.A., Kumar S., Kumar V., Sharma R. Milk Analog: Plant Based Alternatives to Conventional Milk, Production, Potential and Health Concerns. Crit. Rev. Food Sci. Nutr. 2020;60:3005–3023. doi: 10.1080/10408398.2019.1674243.
    1. Aydar E.F., Tutuncu S., Ozcelik B. Plant-Based Milk Substitutes: Bioactive Compounds, Conventional and Novel Processes, Bioavailability Studies, and Health Effects. J. Funct. Foods. 2020;70:103975. doi: 10.1016/j.jff.2020.103975.
    1. Singh-Povel C.M., Van Gool M.P., Gual Rojas A.P., Bragt M.C.E., Kleinnijenhuis A.J., Hettinga K.A. Nutritional Content, Protein Quantity, Protein Quality and Carbon Footprint of Plant-Based Drinks and Semi-Skimmed Milk in the Netherlands and Europe. Public Health Nutr. 2022;25:1416–1426. doi: 10.1017/S1368980022000453.
    1. Word Health Organization . Guideline: Sugars Intake for Adults and Children. WHO; Geneva, Switzerland: 2015.
    1. Foster-Powell K., Holt S.H.A., Brand-Miller J.C. International Table of Gylcemic Index and Glycemic Load Values: 2002. Am. J. Clin. Nutr. 2002;76:5–56. doi: 10.1093/ajcn/76.1.5.
    1. Vogelsang-O’Dwyer M., Sahin A.W., Zannini E., Arendt E.K. Physicochemical and Nutritional Properties of High Protein Emulsion-Type Lupin-Based Model Milk Alternatives: Effect of Protein Source and Homogenization Pressure. J. Sci. Food Agric. 2021;102:5086–5097. doi: 10.1002/jsfa.11230.
    1. Pineli L.L.O., Botelho R.B.A., Zandonadi R.P., Solorzano J.L., de Oliveira G.T., Reis C.E.G., Teixeira D.d.S. Low Glycemic Index and Increased Protein Content in a Novel Quinoa Milk. LWT-Food Sci. Technol. 2015;63:1261–1267. doi: 10.1016/j.lwt.2015.03.094.
    1. Shin H.S., Ingram J.R., McGill A.T., Poppitt S.D. Lipids, CHOs, Proteins: Can All Macronutrients Put a “brake” on Eating? Physiol. Behav. 2013;120:114–123. doi: 10.1016/j.physbeh.2013.07.008.
    1. Fardet A., Leenhardt F., Lioger D., Scalbert A., Rémésy C. Parameters Controlling the Glycaemic Response to Breads. Nutr. Res. Rev. 2006;19:18–25. doi: 10.1079/NRR2006118.
    1. Graf B.L., Poulev A., Kuhn P., Grace M.H., Lila M.A., Raskin I. Quinoa Seeds Leach Phytoecdysteroids and Other Compounds with Anti-Diabetic Properties. Food Chem. 2014;163:178–185. doi: 10.1016/j.foodchem.2014.04.088.
    1. Sun L., Tan K.W.J., Siow P.C., Henry C.J. Soya Milk Exerts Different Effects on Plasma Amino Acid Responses and Incretin Hormone Secretion Compared with Cows’ Milk in Healthy, Young Men. Br. J. Nutr. 2016;116:1216–1221. doi: 10.1017/S0007114516003214.

Source: PubMed

3
S'abonner