Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging

Simone Shah Abhay, Dhanraj Ganapathy, Deepak Nallaswamy Veeraiyan, Padma Ariga, Artak Heboyan, Pokpong Amornvit, Dinesh Rokaya, Viritpon Srimaneepong, Simone Shah Abhay, Dhanraj Ganapathy, Deepak Nallaswamy Veeraiyan, Padma Ariga, Artak Heboyan, Pokpong Amornvit, Dinesh Rokaya, Viritpon Srimaneepong

Abstract

Recently, polyetheretherketone (PEEK) has been introduced to the dental market as a high-performance and chemically inert biomaterial. This study aimed to compare the wear resistance, abrasiveness, color stability, and displacement resistance of zirconia and PEEK milled crowns. An ideal tooth preparation of a first maxillary molar was done and scanned by an intraoral scanner to make a digital model. Then, the prosthetic crown was digitally designed on the CAD software, and the STL file was milled in zirconia (CaroZiir S, Carol Zircolite Pvt. Ltd., Gujarat, India) and PEEK (BioHpp, Bredent GmbH, Senden, Germany) crowns using five-axis CNC milling machines. The wear resistance, color stability, and displacement resistance of the milled monolithic zirconia with unfilled PEEK crowns using a chewing simulator with thermocyclic aging (120,000 cycles) were compared. The antagonist wear, material wear, color stability, and displacement were evaluated and compared among the groups using the Wilcoxon-Mann-Whitney U-test. Zirconia was shown to be three times more abrasive than PEEK (p value < 0.05). Zirconia had twice the wear resistance of PEEK (p value < 0.05). Zirconia was more color stable than PEEK (p value < 0.05). PEEK had more displacement resistance than zirconia (p value < 0.05). PEEK offers minimal abrasion, better stress modulation through plastic deformation, and good color stability, which make it a promising alternative to zirconia crown.

Keywords: CAD/CAM; PEEK; aging process; biodegradation; biomaterials; chewing simulation; color stability; crowns; dental materials; dentistry; displacement resistance; wear resistance; zirconia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Structure of zirconia (A) and polyetheretherketone (PEEK) (B). Modified from [13].
Figure 2
Figure 2
Color images of crowns after wear. Zirconia (A) and PEEK (B).
Figure 3
Figure 3
Displaced and fractured zirconia crown (A) and displaced and flattened cusp of the PEEK crown (B).
Figure 4
Figure 4
The Box-and-Whisker plot shows the distribution of color stability of thermocycled and worn zirconia and PEEK crowns. The color stability of thermocycled and worn zirconia was significantly better than that of the PEEK crowns (p < 0.001).
Figure 5
Figure 5
The Box-and-Whisker plot shows the distribution of displacement (mm2) of thermocycled and worn zirconia and PEEK crowns. The displacement resistance of thermocycled and worn PEEK was higher than that of the zirconia crowns (p < 0.001).

References

    1. Rokaya D., Srimaneepong V., Qin J., Siraleartmukul K., Siriwongrungson V. Graphene oxide/silver nanoparticle coating produced by electrophoretic deposition improved the mechanical and tribological properties of niti alloy for biomedical applications. J. Nanosci. Nanotechnol. 2019;19:3804–3810. doi: 10.1166/jnn.2019.16327.
    1. Diabb J., Rodríguez C.A., Mamidi N., Sandoval J.A., Taha-Tijerina J., Martínez-Romero O., Elías-Zúñiga A. Study of lubrication and wear in single point incremental sheet forming (spif) process using vegetable oil nanolubricants. Wear. 2017;376–377:777–785. doi: 10.1016/j.wear.2017.01.045.
    1. Lee A., He L.H., Lyons K., Swain M.V. Tooth wear and wear investigations in dentistry. J. Oral Rehabil. 2012;39:217–225. doi: 10.1111/j.1365-2842.2011.02257.x.
    1. Gkantidis N., Dritsas K., Ren Y., Halazonetis D., Katsaros C. An accurate and efficient method for occlusal tooth wear assessment using 3D digital dental models. Sci. Rep. 2020;10:10103. doi: 10.1038/s41598-020-66534-4.
    1. Gundugollu Y., Yalavarthy R.S., Krishna M.H., Kalluri S., Pydi S.K., Tedlapu S.K. Comparison of the effect of monolithic and layered zirconia on natural teeth wear: An in vitro study. J. Indian Prosthodont. Soc. 2018;18:336–342.
    1. Ludovichetti F.S., Trindade F.Z., Werner A., Kleverlaan C.J., Fonseca R.G. Wear resistance and abrasiveness of cad-cam monolithic materials. J. Prosthet. Dent. 2018;120:318.e1–318.e8. doi: 10.1016/j.prosdent.2018.05.011.
    1. Ríos S.E., Garcilazo G.A., Guerrero I.J., Meade R.I., Miguelena M.K. Comparative study of displacement resistance of four zirconia cements. Rev. Odont. Mex. 2017;21:235–240.
    1. Kim J.C., Yu B., Lee Y.K. Influence of surface layer removal of shade guide tabs on the measured color by spectrophotometer and spectroradiometer. J. Dent. 2008;36:1061–1067. doi: 10.1016/j.jdent.2008.09.004.
    1. Lee S.H., Lee Y.K. Effect of thermocycling on optical parameters of resin composites by the brand and shade. Am. J. Dent. 2008;21:361–367.
    1. Kongkiatkamon S., Booranasophone K., Tongtaksin A., Kiatthanakorn V., Rokaya D. Comparison of fracture load of the four translucent zirconia crowns. Molecules. 2021;26:5308. doi: 10.3390/molecules26175308.
    1. Mandour M.H. Wear performance of three cad/cam monolithic restorations: Two-body wear and surface roughness. Egypt. Dent. J. 2017;63:1939–1953. doi: 10.21608/edj.2017.75172.
    1. Grech J., Antunes E. Zirconia in dental prosthetics: A literature review. J. Mater. Res. Technol. 2019;8:4956–4964. doi: 10.1016/j.jmrt.2019.06.043.
    1. Sorrentino R., Navarra C.O., Di Lenarda R., Breschi L., Zarone F., Cadenaro M., Spagnuolo G. Effects of finish line design and fatigue cyclic loading on phase transformation of zirconia dental ceramics: A qualitative micro-raman spectroscopic analysis. Materials. 2019;12:863. doi: 10.3390/ma12060863.
    1. Alqurashi H., Khurshid Z., Syed A.U.Y., Rashid Habib S., Rokaya D., Zafar M.S. Polyetherketoneketone (pekk): An emerging biomaterial for oral implants and dental prostheses. J. Adv. Res. 2021;28:87–95. doi: 10.1016/j.jare.2020.09.004.
    1. Najeeb S., Zafar M.S., Khurshid Z., Siddiqui F. Applications of polyetheretherketone (peek) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016;60:12–19. doi: 10.1016/j.jpor.2015.10.001.
    1. Alexakou E., Damanaki M., Zoidis P., Bakiri E., Mouzis N., Smidt G., Kourtis S. Peek high performance polymers: A review of properties and clinical applications in prosthodontics and restorative dentistry. Eur. J. Prosthodont. Restor. Dent. 2019;27:113–121.
    1. Muhsin S.A., Hatton P.V., Johnson A., Sereno N., Wood D.J. Determination of polyetheretherketone (peek) mechanical properties as a denture material. Saudi Dent. J. 2019;31:382–391. doi: 10.1016/j.sdentj.2019.03.005.
    1. Hallmann L., Mehl A., Sereno N., Hämmerle C.H.F. The improvement of adhesive properties of peek through different pre-treatments. Appl. Surf. Sci. 2012;258:7213–7218. doi: 10.1016/j.apsusc.2012.04.040.
    1. Stawarczyk B., Özcan M., Trottmann A., Schmutz F., Roos M., Hämmerle C. Two-body wear rate of cad/cam resin blocks and their enamel antagonists. J. Prosthet. Dent. 2013;109:325–332. doi: 10.1016/S0022-3913(13)60309-1.
    1. Tian Y., Chen C., Xu X., Wang J., Hou X., Li K., Lu X., Shi H., Lee E.-S., Jiang H.B. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning. 2021;2021:9950131. doi: 10.1155/2021/9950131.
    1. Humagain M., Rokaya D. Integrating digital technologies in dentistry to enhance the clinical success. Kathmandu Univ. Med. J. (KUMJ) 2019;17:256–257.
    1. Amornvit P., Rokaya D., Sanohkan S. Comparison of accuracy of current ten intraoral scanners. BioMed Res. Int. 2021;2021:2673040. doi: 10.1155/2021/2673040.
    1. Khorsandi D., Fahimipour A., Abasian P., Saber S.S., Seyedi M., Ghanavati S., Ahmad A., De Stephanis A.A., Taghavinezhaddilami F., Leonova A., et al. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater. 2021;122:26–49. doi: 10.1016/j.actbio.2020.12.044.
    1. Nesic D., Schaefer B.M., Sun Y., Saulacic N., Sailer I. 3D printing approach in dentistry: The future for personalized oral soft tissue regeneration. J. Clin. Med. 2020;9:2238. doi: 10.3390/jcm9072238.
    1. Cardoso K.V., Adabo G.L., Mariscal-Muñoz E., Antonio S.G., Arioli Filho J.N. Effect of sintering temperature on microstructure, flexural strength, and optical properties of a fully stabilized monolithic zirconia. J. Prosthet. Dent. 2020;124:594–598. doi: 10.1016/j.prosdent.2019.08.007.
    1. Thoma D.S., Brandenberg F., Fehmer V., Knechtle N., Hämmerle C.H., Sailer I. The esthetic effect of veneered zirconia abutments for single-tooth implant reconstructions: A randomized controlled clinical trial. Clin. Implant Dent. Relat. Res. 2016;18:1210–1217. doi: 10.1111/cid.12388.
    1. Bathala L., Majeti V., Rachuri N., Singh N., Gedela S. The role of polyether ether ketone (peek) in dentistry—A review. J. Med. Life. 2019;12:5–9. doi: 10.25122/jml-2019-0003.
    1. Papathanasiou I., Kamposiora P., Papavasiliou G., Ferrari M. The use of peek in digital prosthodontics: A narrative review. BMC Oral Health. 2020;20:217. doi: 10.1186/s12903-020-01202-7.
    1. Skirbutis G., Dzingutė A., Masiliūnaitė V., Šulcaitė G., Žilinskas J. A review of peek polymer’s properties and its use in prosthodontics. Stomatologija. 2017;19:19–23.
    1. Mamidi N., Velasco Delgadillo R.M., Gonzáles Ortiz A., Barrera E.V. Carbon nano-onions reinforced multilayered thin film system for stimuli-responsive drug release. Pharmaceutics. 2020;12:1208. doi: 10.3390/pharmaceutics12121208.
    1. Thiruchitrambalam M., Bubesh Kumar D., Shanmugam D., Jawaid M. A review on peek composites—Manufacturing methods, properties and applications. Mater. Today Proc. 2020;33:1085–1092. doi: 10.1016/j.matpr.2020.07.124.
    1. Han X., Yang D., Yang C., Spintzyk S., Scheideler L., Li P., Li D., Geis-Gerstorfer J., Rupp F. Carbon fiber reinforced peek composites based on 3D-printing technology for orthopedic and dental applications. J. Clin. Med. 2019;8:240. doi: 10.3390/jcm8020240.
    1. Wu W., Geng P., Li G., Zhao D., Zhang H., Zhao J. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed peek and a comparative mechanical study between peek and abs. Materials. 2015;8:5834–5846. doi: 10.3390/ma8095271.
    1. Li Q., Zhao W., Li Y., Yang W., Wang G. Flexural properties and fracture behavior of cf/peek in orthogonal building orientation by fdm: Microstructure and mechanism. Polymers. 2019;11:656. doi: 10.3390/polym11040656.
    1. Souza J.C.M., Pinho S.S., Braz M.P., Silva F.S., Henriques B. Carbon fiber-reinforced peek in implant dentistry: A scoping review on the finite element method. Comput. Methods Biomech. Biomed. Eng. 2021;24:1355–1367. doi: 10.1080/10255842.2021.1888939.
    1. Stawarczyk B., Taufall S., Roos M., Schmidlin P.R., Lümkemann N. Bonding of composite resins to peek: The influence of adhesive systems and air-abrasion parameters. Clin. Oral Investig. 2018;22:763–771. doi: 10.1007/s00784-017-2151-x.
    1. Chen S.G., Yang J., Jia Y.G., Lu B., Ren L. TiO2 and peek reinforced 3D printing pmma composite resin for dental denture base applications. Nanomaterials. 2019;9:1049. doi: 10.3390/nano9071049.
    1. Aladağ A., Oğuz D., Çömlekoğlu M.E., Akan E. In vivo wear determination of novel cad/cam ceramic crowns by using 3D alignment. J. Adv. Prosthodont. 2019;11:120–127. doi: 10.4047/jap.2019.11.2.120.
    1. Kim J.H., Lee S.J., Park J.S., Ryu J.J. Fracture load of monolithic cad/cam lithium disilicate ceramic crowns and veneered zirconia crowns as a posterior implant restoration. Implant Dent. 2013;22:66–70. doi: 10.1097/ID.0b013e318278a576.
    1. Heintze S.D., Eser A., Monreal D., Rousson V. Using a chewing simulator for fatigue testing of metal ceramic crowns. J. Mech. Behav. Biomed. Mater. 2017;65:770–780. doi: 10.1016/j.jmbbm.2016.09.002.
    1. Park J.-Y., Bae S.-Y., Lee J.-J., Kim J.-H., Kim H.-Y., Kim W.-C. Evaluation of the marginal and internal gaps of three different dental prostheses: Comparison of the silicone replica technique and three-dimensional superimposition analysis. J. Adv. Prosthodont. 2017;9:159–169. doi: 10.4047/jap.2017.9.3.159.
    1. Zarone F., Russo S., Sorrentino R. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2011;27:83–96. doi: 10.1016/j.dental.2010.10.024.
    1. Öztürk C., Can G. Effect of sintering parameters on the mechanical properties of monolithic zirconia. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019;13:247–252. doi: 10.15171/joddd.2019.038.
    1. Janyavula S., Lawson N., Cakir D., Beck P., Ramp L.C., Burgess J.O. The wear of polished and glazed zirconia against enamel. J. Prosthet. Dent. 2013;109:22–29. doi: 10.1016/S0022-3913(13)60005-0.
    1. Emera R., Altonbary G. Comparison between all zirconia, all peek, and zirconia-peek telescopic attachments for two implants retained mandibular complete overdentures: In vitro stress analysis study. J. Dent. Implant. 2019;9:24–29. doi: 10.4103/jdi.jdi_6_19.
    1. Kiliç V., Hürmüzlü F. Effect of light sources on bond strength of different composite resins repaired with bulk-fill composite. Odovtos-Int. J. Dent. Sc. 2021;23:103–115.
    1. Zorba Y.O., Ilday N.O., Bayındır Y.Z., Demirbuga S. Comparing the shear bond strength of direct and indirect composite inlays in relation to different surface conditioning and curing techniques. Eur. J. Dent. 2013;7:436–441. doi: 10.4103/1305-7456.120679.
    1. Yeo I.S., Lee J.H., Kang T.J., Kim S.K., Heo S.J., Koak J.Y., Park J.M., Lee S.Y. The effect of abutment screw length on screw loosening in dental implants with external abutment connections after thermocycling. Int. J. Oral Maxillofac. Implant. 2014;29:59–62. doi: 10.11607/jomi.3125.
    1. Evans J.G., Ley R.L.C., Barkmeier W.W. Resin bond strength to siliconated metal. J. Esthet. Dent. 1992;4:30–33. doi: 10.1111/j.1708-8240.1992.tb00651.x.
    1. Heintze S.D., Cavalleri A., Forjanic M., Zellweger G., Rousson V. A comparison of three different methods for the quantification of the in vitro wear of dental materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2006;22:1051–1062. doi: 10.1016/j.dental.2005.08.010.
    1. Yılmaz E.C., Sadeler R. Investigation of three-body wear of dental materials under different chewing cycles. Sci. Eng. Compos. Mater. 2018;25:781–787. doi: 10.1515/secm-2016-0385.
    1. Diabb Zavala J.M., Leija Gutiérrez H.M., Segura-Cárdenas E., Mamidi N., Morales-Avalos R., Villela-Castrejón J., Elías-Zúñiga A. Manufacture and mechanical properties of knee implants using swcnts/uhmwpe composites. J. Mech. Behav. Biomed. Mater. 2021;120:104554. doi: 10.1016/j.jmbbm.2021.104554.
    1. Mamidi N., Delgadillo R.M.V., Castrejón J.V. Unconventional and facile production of a stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation. Environ. Sci. Nano. 2021;8:2081–2097. doi: 10.1039/D1EN00354B.
    1. Rokaya D., Srimaneepong V., Sapkota J., Qin J., Siraleartmukul K., Siriwongrungson V. Polymeric materials and films in dentistry: An overview. J. Adv. Res. 2018;14:25–34. doi: 10.1016/j.jare.2018.05.001.
    1. Mamidi N., Leija H.M., Diabb J.M., Lopez Romo I., Hernandez D., Castrejón J.V., Martinez Romero O., Barrera E.V., Elias Zúñiga A. Cytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites. J. Biomed. Mater. Res. A. 2017;105:3042–3049. doi: 10.1002/jbm.a.36168.
    1. Salernitano E., Migliaresi C. Composite materials for biomedical applications: A review. J. Appl. Biomater. Biomech. JABB. 2003;1:3–18.
    1. Tibbitt M.W., Rodell C.B., Burdick J.A., Anseth K.S. Progress in material design for biomedical applications. Proc. Natl. Acad. Sci. USA. 2015;112:14444–14451. doi: 10.1073/pnas.1516247112.
    1. Gou M., Chen H., Kang J., Wang H. Antagonist enamel wear of tooth-supported monolithic zirconia posterior crowns in vivo: A systematic review. J. Prosthet. Dent. 2019;121:598–603. doi: 10.1016/j.prosdent.2018.06.005.
    1. Heimer S., Schmidlin P.R., Stawarczyk B. Discoloration of pmma, composite, and peek. Clin. Oral Investig. 2017;21:1191–1200. doi: 10.1007/s00784-016-1892-2.
    1. Wimmer T., Huffmann A.M., Eichberger M., Schmidlin P.R., Stawarczyk B. Two-body wear rate of peek, cad/cam resin composite and pmma: Effect of specimen geometries, antagonist materials and test set-up configuration. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2016;32:e127–e136. doi: 10.1016/j.dental.2016.03.005.
    1. Aljanobi G., Al-Sowygh Z.H. The effect of thermocycling on the translucency and color stability of modified glass ceramic and multilayer zirconia materials. Cureus. 2020;12:e6968. doi: 10.7759/cureus.6968.
    1. Sarıkaya I., Hayran Y. Effects of dynamic aging on the wear and fracture strength of monolithic zirconia restorations. BMC Oral Health. 2018;18:146. doi: 10.1186/s12903-018-0618-z.
    1. Bajraktarova-Valjakova E., Korunoska-Stevkovska V., Kapusevska B., Gigovski N., Bajraktarova-Misevska C., Grozdanov A. Contemporary dental ceramic materials, a review: Chemical composition, physical and mechanical properties, indications for use. Open Access Maced. J. Med. Sci. 2018;6:1742–1755. doi: 10.3889/oamjms.2018.378.
    1. Qorri E., Gashi-Cenkoglu B., Propris F., Karabudak I. The use of biohpp (high performance polymer) as superstructure material in oral implantology. Clin. Oral Implant. Res. 2018;29:351. doi: 10.1111/clr.236_13358.
    1. Mirchandani B., Zhou T., Heboyan A., Yodmongkol S., Buranawat B. Biomechanical aspects of various attachments for implant overdentures: A review. Polymers. 2021;13:3248. doi: 10.3390/polym13193248.
    1. Daou E.E. The zirconia ceramic: Strengths and weaknesses. Open Dent. J. 2014;8:33–42. doi: 10.2174/1874210601408010033.
    1. Caracostea Objelean A., Labunet A., Silaghi-Dumitrescu L., Moldovan M., Sava S., Badea M.E. In vitro chewing simulation model influence on the adhesive-tooth structure interface. Key Eng. Mater. 2016;695:77–82. doi: 10.4028/.
    1. Heintze S.D., Zellweger G., Grunert I., Muñoz-Viveros C.A., Hagenbuch K. Laboratory methods for evaluating the wear of denture teeth and their correlation with clinical results. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2012;28:261–272. doi: 10.1016/j.dental.2011.10.012.
    1. Juntavee N., Attashu S. Effect of different sintering process on flexural strength of translucency monolithic zirconia. J. Clin. Exp. Dent. 2018;10:e821–e830. doi: 10.4317/jced.54749.
    1. Heboyan A., Manrikyan M., Zafar M.S., Rokaya D., Nushikyan R., Vardanyan I., Vardanyan A., Khurshid Z. Bacteriological evaluation of gingival crevicular fluid in teeth restored using fixed dental prostheses: An in vivo study. Int. J. Mol. Sci. 2021;22:5463. doi: 10.3390/ijms22115463.
    1. Shen Y.X., Tang W.Z. Analysis of vita shade guide with spectrophotometer under different color measurement conditions. Acad. J. Second. Mil. Med. Univ. 2015;36:100–102. doi: 10.3724/SP.J.1008.2015.00100.
    1. Avetisyan A., Markaryan M., Rokaya D., Tovani-Palone M.R., Zafar M.S., Khurshid Z., Vardanyan A., Heboyan A. Characteristics of periodontal tissues in prosthetic treatment with fixed dental prostheses. Molecules. 2021;26:1331. doi: 10.3390/molecules26051331.
    1. Heboyan A., Syed A.U.Y., Rokaya D., Cooper P.R., Manrikyan M., Markaryan M. Cytomorphometric analysis of inflammation dynamics in the periodontium following the use of fixed dental prostheses. Molecules. 2020;25:4650. doi: 10.3390/molecules25204650.
    1. Kozmacs C., Hollmann B., Arnold W.H., Naumova E., Piwowarczyk A. Polishing of monolithic zirconia crowns-results of different dental practitioner groups. Dent. J. 2017;5:30. doi: 10.3390/dj5040030.
    1. Chavali R., Lin C.P., Lawson N.C. Evaluation of different polishing systems and speeds for dental zirconia. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2017;26:410–418. doi: 10.1111/jopr.12396.
    1. Heboyan A., Manrikyan M., Markaryan M., Vardanyan I. Changes in the parameters of gingival crevicular fluid in masticatory function restoration by various prosthodontic constructions. Int. J. Pharm. Res. 2020;12:2088–2093.
    1. AlGhazali N., Burnside G., Smith R.W., Preston A.J., Jarad F.D. Performance assessment of vita easy shade spectrophotometer on colour measurement of aesthetic dental materials. Eur. J. Prosthodont. Restor. Dent. 2011;19:168–174.
    1. Kalantari M.H., Ghoraishian S.A., Mohaghegh M. Evaluation of accuracy of shade selection using two spectrophotometer systems: Vita easyshade and degudent shadepilot. Eur. J. Dent. 2017;11:196–200. doi: 10.4103/ejd.ejd_195_16.
    1. Linjawi A.I., Abbassy M.A. Comparison of shear bond strength to clinically simulated debonding of orthodontic brackets: An in vitro study. J. Orthod. Sci. 2016;5:25–29.
    1. Salem S.K. Wear and microhardness of three different types of cad/cam ceramic materials. Egypt Dent. J. 2019;65:2857–2866. doi: 10.21608/edj.2019.72682.
    1. Bolaca A., Erdogan Y. In vitro evaluation of the wear of primary tooth enamel against different ceramic and composite resin materials. Niger. J. Clin. Pract. 2019;22:313–319.
    1. Scribante A., Bollardi M., Chiesa M., Poggio C., Colombo M. Flexural properties and elastic modulus of different esthetic restorative materials: Evaluation after exposure to acidic drink. BioMed Res. Int. 2019;2019:5109481. doi: 10.1155/2019/5109481.
    1. Alrahlah A., Khan R., Al-Odayni A.-B., Saeed W.S., Bautista L.S., Vohra F. Evaluation of synergic potential of rgo/sio2 as hybrid filler for bisgma/tegdma dental composites. Polymers. 2020;12:3025. doi: 10.3390/polym12123025.
    1. Rizo-Gorrita M., Herráez-Galindo C., Torres-Lagares D., Serrera-Figallo M., Gutiérre-Pérez J.L. Biocompatibility of polymer and ceramic cad/cam materials with human gingival fibroblasts (hgfs) Polymers. 2019;11:1446. doi: 10.3390/polym11091446.

Source: PubMed

3
S'abonner