Hepcidin, an emerging and important player in brain iron homeostasis

Driton Vela, Driton Vela

Abstract

Hepcidin is emerging as a new important factor in brain iron homeostasis. Studies suggest that there are two sources of hepcidin in the brain; one is local and the other comes from the circulation. Little is known about the molecular mediators of local hepcidin expression, but inflammation and iron-load have been shown to induce hepcidin expression in the brain. The most important source of hepcidin in the brain are glial cells. Role of hepcidin in brain functions has been observed during neuronal iron-load and brain hemorrhage, where secretion of abundant hepcidin is related with the severity of brain damage. This damage can be reversed by blocking systemic and local hepcidin secretion. Studies have yet to unveil its role in other brain conditions, but the rationale exists, since these conditions are characterized by overexpression of the factors that stimulate brain hepcidin expression, such as inflammation, hypoxia and iron-overload.

Keywords: Alzheimer’s disease; Astrocytes; Brain hemorrhage; Hepcidin; Inflammation.

Figures

Fig. 1
Fig. 1
Systemic iron homeostasis. Trivalent iron is reduced by ferrireductases (DcytB) before its absorption through DMT1 in enterocytes. Once inside enterocytes iron binds with chaperones like PCBs. PCBs act like intracellular iron transporters that distribute this metal to ferritin depots and probably to FPN. FPN is the main exporter of iron out of cells. This action of FPN is helped by ferrioxidases (like Heph). After its export out of cells, iron is immediately bound to Tf. This complex circulates in plasma and finally binds with its target, which is TFR1. Systemic iron availability is controlled by hepcidin. Hepcidin is produced in hepatocytes in response to different stimuli. Iron-mediated pathways are the main factors that induce hepcidin expression. The most important pathways activate LSECs, which in turn produce BMP6. BMP6 acts in a paracrine manner through BMPR in hepatocytes. BMPR activates SMAD pathway, which induces hepcidin expression. Iron pathways induce hepcidin expression through membrane proteins, like TFR2 and HFE, as well. Inflammatory signals are also important upregulators of hepcidin by acting through JAK/STAT pathway. Negative control is realized through ERFE, which is produced from erythrocyte precursors. BMP6 bone morphogenetic protein 6, BMPR BMP receptor, DcytB duodenal cytochrome B, DMT1 divalent metal transporter 1, ERFE erythroferrone, FPN ferroportin, HAMP hepcidin antimicrobial peptide, Heph hephaestin, HFE hemochromatosis protein, JAK2/STAT3 janus kinase 2/signal transducer and activator of transcription 3, LSEC liver sinusoidal endothelial cells, PCB poly-(rC)-binding protein, SMAD S-mothers against decapentaplegic, TFR transferrin receptor
Fig. 2
Fig. 2
Hepcidin regulation and action in brain cells. Hepcidin expression in the brain is often induced by inflammatory stimuli. Inflammatory cytokines increase iron import through DMT1, and decrease iron export due to FPN downregulation. This increases cellular iron-load, especially in neurons. During iron-load conditions, astrocytes and microglia have been shown to increase hepcidin production. This might be the case for neurons as well, but the data are still inconclusive. Use of ad-hepcidin protects neurons during iron-overload conditions, by controlling the activity of iron import and export proteins, like TFR1, DMT1, FPN. Also, ad-hepcidin reduces iron flux from BMVEC, which reduces brain iron-load. Recent data suggest an important role for Zip8 and Steap2 for NTBI entry into brain cells. BMVEC brain microvascular endothelial cell, CIL cellular iron-load, DMT1 divalent metal transporter 1, FPN ferroportin, Hepc hepcidin, IL-6 interleukin 6, NTBI non-transferrin bound iron, TFR1 transferrin receptor 1

References

    1. Pigeon C, Ilyin G, Courselaud B, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276:7811–7819. doi: 10.1074/jbc.M008923200.
    1. Lakhal-Littleton S, Wolna M, Chung YJ, et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 2016;5:e19804. doi: 10.7554/eLife.19804.
    1. Tesfay L, Clausen KA, Kim JW, et al. Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res. 2015;75:2254–2263. doi: 10.1158/0008-5472.CAN-14-2465.
    1. Houamel D, Ducrot N, Lefebvre T, et al. Hepcidin as a major component of renal antibacterial defenses against uropathogenic Escherichia coli. J Am Soc Nephrol. 2016;27:835–846. doi: 10.1681/ASN.2014101035.
    1. Coffey R, Ganz T. Iron homeostasis: an anthropocentric perspective. J Biol Chem. 2017;292:12727–12734. doi: 10.1074/jbc.R117.781823.
    1. Bogdan AR, Miyazawa M, Hashimoto K, et al. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016;41:274–286. doi: 10.1016/j.tibs.2015.11.012.
    1. Canali S, Zumbrennen-Bullough KB, Core AB, et al. Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood. 2017;129:405–414. doi: 10.1182/blood-2016-06-721571.
    1. Steinbicker AU, Bartnikas TB, Lohmeyer LK, et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood. 2011;118:4224–4230. doi: 10.1182/blood-2011-03-339952.
    1. Zhao N, Maxson JE, Zhang RH, et al. Neogenin facilitates the induction of hepcidin expression by hemojuvelin in the liver. J Biol Chem. 2016;291:12322–12335. doi: 10.1074/jbc.M116.721191.
    1. Wallace DF, Summerville L, Crampton EM, et al. Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology. 2009;50:1992–2000. doi: 10.1002/hep.23198.
    1. Vadhan-Raj S, Abonour R, Goldman JW, et al. A first-in-human phase 1 study of a hepcidin monoclonal antibody, LY2787106, in cancer-associated anemia. J Hematol Oncol. 2017;10:73. doi: 10.1186/s13045-017-0427-x.
    1. Kautz L, Jung G, Valore EV, et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46:678–684. doi: 10.1038/ng.2996.
    1. Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25:564–572. doi: 10.1681/ASN.2013040355.
    1. Sonnweber T, Nachbaur D, Schroll A, et al. Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB. Gut. 2014;63:1951–1959. doi: 10.1136/gutjnl-2013-305317.
    1. Poli M, Girelli D, Campostrini N, et al. Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo. Blood. 2011;117:997–1004. doi: 10.1182/blood-2010-06-289082.
    1. Lehtihet M, Bonde Y, Beckman L, et al. Circulating hepcidin-25 Is reduced by endogenous estrogen in humans. PLoS ONE. 2016;11:e0148802. doi: 10.1371/journal.pone.0148802.
    1. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117:4425–4433. doi: 10.1182/blood-2011-01-258467.
    1. Xiong X-Y, Liu L, Wang F-X, et al. Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage, clinical perspective. Circulation. 2016;134:1025–1038. doi: 10.1161/CIRCULATIONAHA.116.021881.
    1. Roelckel U, Leenders KL, von Ammon K, et al. Brain tumor iron uptake measured with positron emission tomography and 52Fe-citrate. J Neurooncol. 1996;29:157–165. doi: 10.1007/BF00182139.
    1. McCarthy RC, Kosman DJ. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood–brain barrier. Front Mol Neurosci. 2015;8:31. doi: 10.3389/fnmol.2015.00031.
    1. McCarthy RC, Kosman DJ. Iron transport across the blood–brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci. 2015;72:709–727. doi: 10.1007/s00018-014-1771-4.
    1. Bien-Ly N, Yu YJ, Bumbaca D, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211:233–244. doi: 10.1084/jem.20131660.
    1. Rouault TA, Cooperman S. Brain iron metabolism. Semin Pediatr Neurol. 2006;13:142–148. doi: 10.1016/j.spen.2006.08.002.
    1. McCarthy RC, Kosman DJ. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS ONE. 2014;9:e89003. doi: 10.1371/journal.pone.0089003.
    1. Codazzi F, Pelizzoni I, Zacchetti D, et al. Iron entry in neurons and astrocytes: a link with synaptic activity. Front Mol Neurosci. 2015;8:18. doi: 10.3389/fnmol.2015.00018.
    1. Dringen R, Bishop GM, Koeppe M, et al. The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res. 2007;32:1884–1890. doi: 10.1007/s11064-007-9375-0.
    1. Pelizzoni I, Zacchetti D, Campanella A, et al. Iron uptake in quiescent and inflammation-activated astrocytes: a potentially neuroprotective control of iron burden. Biochim Biophys Acta Mol Basis Dis. 2013;1832:1326–1333. doi: 10.1016/j.bbadis.2013.04.007.
    1. Salvador GA. Iron in neuronal function and dysfunction. BioFactors. 2010;36:103–110. doi: 10.1002/biof.80.
    1. Skjørringe T, Burkhart A, Johnsen KB, et al. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood–brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 2015;8:19.
    1. Ji C, Kosman DJ. Molecular mechanisms of non-transferrin-bound and transferrin-bound iron uptake in primary hippocampal neurons. J Neurochem. 2015;133:668–683. doi: 10.1111/jnc.13040.
    1. Krause A, Neitz S, Mägert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480:147–150. doi: 10.1016/S0014-5793(00)01920-7.
    1. Zechel S, Huber-Wittmer K, von Bohlen und Halbach O. Distribution of the iron-regulating protein hepcidin in the murine central nervous system. J Neurosci Res. 2006;84:790–800. doi: 10.1002/jnr.20991.
    1. Raha-Chowdhury R, Raha AA, Forostyak S, et al. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24. doi: 10.1186/s12868-015-0161-7.
    1. Wang S-M, Fu L-J, Duan X-L, et al. Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci. 2010;67:123–133. doi: 10.1007/s00018-009-0167-3.
    1. Raha AA, Vaishnav RA, Friedland RP, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. Acta Neuropathol Commun. 2013;1:55. doi: 10.1186/2051-5960-1-55.
    1. Rutgers MP, Pielen A, Gille M. Chronic cerebellar ataxia and hereditary hemochromatosis: causal or coincidental association? J Neurol. 2007;254:1296–1297. doi: 10.1007/s00415-006-0507-2.
    1. Nielsen JE, Jensen LN, Krabbe K. Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome. J Neurol Neurosurg Psychiatry. 1995;59:318–321. doi: 10.1136/jnnp.59.3.318.
    1. Miyasaki K, Murao S, Koizumi N. Hemochromatosis associated with brain lesions—a disorder of trace-metal binding proteins and/or polymers? J Neuropathol Exp Neurol. 1977;36:964–976. doi: 10.1097/00005072-197711000-00008.
    1. Lin D, Ding J, Liu J-Y, et al. Decreased serum hepcidin concentration correlates with brain iron deposition in patients with HBV-related cirrhosis. PLoS ONE. 2013;8:e65551. doi: 10.1371/journal.pone.0065551.
    1. Aguirre P, Mena N, Tapia V, et al. Iron homeostasis in neuronal cells: a role for IREG1. BMC Neurosci. 2005;6:3. doi: 10.1186/1471-2202-6-3.
    1. Schluesener H, Meyermann R. Neutrophilic defensins penetrate the blood–brain barrier. J Neurosci Res. 1995;42:718–723. doi: 10.1002/jnr.490420515.
    1. Stalmans S, Bracke N, Wynendaele E, et al. Cell-penetrating peptides selectively cross the blood–brain barrier in vivo. PLoS ONE. 2015;10:e0139652. doi: 10.1371/journal.pone.0139652.
    1. Gnana-Prakasam JP, Martin PM, Mysona BA, et al. Hepcidin expression in mouse retina and its regulation via lipopolysaccharide/Toll-like receptor-4 pathway independent of Hfe. Biochem J. 2008;411:79–88. doi: 10.1042/BJ20071377.
    1. Hadziahmetovic M, Song Y, Wolkow N, et al. Bmp6 regulates retinal iron homeostasis and has altered expression in age-related macular degeneration. Am J Pathol. 2011;179:335–348. doi: 10.1016/j.ajpath.2011.03.033.
    1. Hadziahmetovic M, Song Y, Ponnuru P, et al. Age-dependent retinal iron accumulation and degeneration in hepcidin knockout mice. Investig Ophthalmol Vis Sci. 2011;52:109–118. doi: 10.1167/iovs.10-6113.
    1. Gnana-Prakasam JP, Tawfik A, Romej M, et al. Iron-mediated retinal degeneration in haemojuvelin-knockout mice. Biochem J. 2012;441:599–608. doi: 10.1042/BJ20111148.
    1. Bardou-Jacquet E, Ben Ali Z, Beaumont-Epinette M-P, et al. Non-HFE hemochromatosis: pathophysiological and diagnostic aspects. Clin Res Hepatol Gastroenterol. 2014;38:143–154. doi: 10.1016/j.clinre.2013.11.003.
    1. Zerbib J, Pierre-Kahn V, Sikorav A, et al. Unusual retinopathy associated with hemochromatosis. Retin Cases Brief Rep. 2015;9:190–194. doi: 10.1097/ICB.0000000000000135.
    1. Theurl M, Song D, Clark E, et al. Mice with hepcidin-resistant ferroportin accumulate iron in the retina. FASEB J. 2016;30:813–823. doi: 10.1096/fj.15-276758.
    1. Lieblein-Boff JC, McKim DB, Shea DT, et al. Neonatal E. coli infection causes neuro-behavioral deficits associated with hypomyelination and neuronal sequestration of iron. J Neurosci. 2013;33:16334–16345. doi: 10.1523/JNEUROSCI.0708-13.2013.
    1. Marques F, Falcao AM, Sousa JC, et al. Altered iron metabolism is part of the choroid plexus response to peripheral inflammation. Endocrinology. 2009;150:2822–2828. doi: 10.1210/en.2008-1610.
    1. Ding H, Yan C-Z, Shi H, et al. Hepcidin is involved in iron regulation in the ischemic brain. PLoS ONE. 2011;6:e25324. doi: 10.1371/journal.pone.0025324.
    1. Wang Q, Du F, Qian Z-M, et al. Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain. Endocrinology. 2008;149:3920–3925. doi: 10.1210/en.2007-1626.
    1. You L-H, Yan C-Z, Zheng B-J, et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death Dis. 2017;8:e2676. doi: 10.1038/cddis.2017.93.
    1. Qian Z-M, He X, Liang T, et al. Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol. 2014;50:811–820. doi: 10.1007/s12035-014-8671-3.
    1. Urrutia P, Aguirre P, Esparza A, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013;126:541–549. doi: 10.1111/jnc.12244.
    1. Li W-Y, Li F-M, Zhou Y-F, et al. Aspirin down regulates hepcidin by inhibiting NF-κB and IL6/JAK2/STAT3 pathways in BV-2 microglial cells treated with lipopolysaccharide. Int J Mol Sci. 2016;17:1921. doi: 10.3390/ijms17121921.
    1. Du F, Qian C, Ming Qian Z, et al. Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase a pathway. Glia. 2011;59:936–945. doi: 10.1002/glia.21166.
    1. Du F, Qian Z-M, Luo Q, et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol Neurobiol. 2015;52:101–114. doi: 10.1007/s12035-014-8847-x.
    1. Gong J, Du F, Qian ZM, et al. Pre-treatment of rats with ad-hepcidin prevents iron-induced oxidative stress in the brain. Free Radic Biol Med. 2016;90:126–132. doi: 10.1016/j.freeradbiomed.2015.11.016.
    1. Zhou Y-F, Zhang C, Yang G, et al. Hepcidin protects neuron from hemin-mediated injury by reducing iron. Front Physiol. 2017;8:332. doi: 10.3389/fphys.2017.00332.
    1. Rathore KI, Redensek A, David S. Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-α and TGF-β1. Glia. 2012;60:738–750. doi: 10.1002/glia.22303.
    1. Zhang Z, Hou L, Song J-L, et al. Pro-inflammatory cytokine-mediated ferroportin down-regulation contributes to the nigral iron accumulation in lipopolysaccharide-induced Parkinsonian models. Neuroscience. 2014;257:20–30. doi: 10.1016/j.neuroscience.2013.09.037.
    1. Sun C, Song N, Xie A, et al. High hepcidin level accounts for the nigral iron accumulation in acute peripheral iron intoxication rats. Toxicol Lett. 2012;212:276–281. doi: 10.1016/j.toxlet.2012.05.022.
    1. Urrutia PJ, Hirsch EC, González-Billault C, et al. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. J Neurochem. 2017;142:140–152. doi: 10.1111/jnc.14005.
    1. De Domenico I, Zhang TY, Koening CL, et al. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Investig. 2010;120:2395–2405. doi: 10.1172/JCI42011.
    1. Burté F, Brown BJ, Orimadegun AE, et al. Circulatory hepcidin is associated with the anti-inflammatory response but not with iron or anemic status in childhood malaria. Blood. 2013;121:3016–3022. doi: 10.1182/blood-2012-10-461418.
    1. Simpson IA, Ponnuru P, Klinger ME, et al. A novel model for brain iron uptake: introducing the concept of regulation. J Cereb Blood Flow Metab. 2015;35:48–57. doi: 10.1038/jcbfm.2014.168.
    1. Hänninen MM, Haapasalo J, Haapasalo H, et al. Expression of iron-related genes in human brain and brain tumors. BMC Neurosci. 2009;10:36. doi: 10.1186/1471-2202-10-36.
    1. Rodriguez Martinez A, Niemela O, Parkkila S. Hepatic and extrahepatic expression of the new iron regulatory protein hemojuvelin. Haematologica. 2004;89:1441–1445.
    1. Wang Y, Chang C-F, Morales M, et al. Bone morphogenetic protein-6 reduces ischemia-induced brain damage in rats. Stroke. 2001;32:2170–2178. doi: 10.1161/hs0901.095650.
    1. Crews L, Adame A, Patrick C, et al. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci. 2010;30:12252–12262. doi: 10.1523/JNEUROSCI.1305-10.2010.
    1. Pellegrino RM, Boda E, Montarolo F, et al. Transferrin receptor 2 dependent alterations of brain iron metabolism affect anxiety circuits in the mouse. Sci Rep. 2016;6:30725. doi: 10.1038/srep30725.
    1. Benkovic SA, Connor JR. Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol. 1993;338:97–113. doi: 10.1002/cne.903380108.
    1. Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016;139:179–197. doi: 10.1111/jnc.13425.
    1. Lu LN, Qian ZM, Wu KC, et al. Expression of iron transporters and pathological hallmarks of Parkinson’s and Alzheimer’s diseases in the brain of young, adult, and aged rats. Mol Neurobiol. 2017;54:5213–5224. doi: 10.1007/s12035-016-0067-0.
    1. Hofer T, Perry G. Nucleic acid oxidative damage in Alzheimer’s disease—explained by the hepcidin–ferroportin neuronal iron overload hypothesis? J Trace Elem Med Biol. 2016;38:1–9. doi: 10.1016/j.jtemb.2016.06.005.
    1. Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:759–767. doi: 10.1093/jnen/60.8.759.
    1. Smith MA, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis. 2010;19:363–372. doi: 10.3233/JAD-2010-1239.
    1. Raven EP, Lu PH, Tishler TA, et al. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis. 2013;37:127–136.
    1. Bartzokis G, Sultzer D, Cummings J, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry. 2000;57:47. doi: 10.1001/archpsyc.57.1.47.
    1. Skjørringe T, Møller LB, Moos T. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front Pharmacol. 2012;3:169. doi: 10.3389/fphar.2012.00169.
    1. Rottkamp CA, Raina AK, Zhu X, et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med. 2001;30:447–450. doi: 10.1016/S0891-5849(00)00494-9.
    1. Peters DG, Connor JR, Meadowcroft MD. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin. Neurobiol Dis. 2015;81:49–65. doi: 10.1016/j.nbd.2015.08.007.
    1. Duce JA, Tsatsanis A, Cater MA, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell. 2010;142:857–867. doi: 10.1016/j.cell.2010.08.014.
    1. Wong BX, Tsatsanis A, Lim LQ, et al. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS ONE. 2014;9:e114174. doi: 10.1371/journal.pone.0114174.
    1. Zheng W, Xin N, Chi Z-H, et al. Divalent metal transporter 1 is involved in amyloid precursor protein processing and A generation. FASEB J. 2009;23:4207–4217. doi: 10.1096/fj.09-135749.
    1. Crespo ÂC, Silva B, Marques L, et al. Genetic and biochemical markers in patients with Alzheimer’s disease support a concerted systemic iron homeostasis dysregulation. Neurobiol Aging. 2014;35:777–785. doi: 10.1016/j.neurobiolaging.2013.10.078.
    1. Sternberg Z, Hu Z, Sternberg D, et al. Serum hepcidin levels, iron dyshomeostasis and cognitive loss in Alzheimer’s disease. Aging Dis. 2017;8:215–227. doi: 10.14336/AD.2016.0811.
    1. Wang J-Y, Zhuang Q-Q, Zhu L-B, et al. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep. 2016;6:36669. doi: 10.1038/srep36669.
    1. Guan X, Xuan M, Gu Q, et al. Regionally progressive accumulation of iron in Parkinson’s disease as measured by quantitative susceptibility mapping. NMR Biomed. 2017;30:e3489. doi: 10.1002/nbm.3489.
    1. Brar S, Henderson D, Schenck J, et al. Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism. Arch Neurol. 2009;66:224–236. doi: 10.1001/archneurol.2008.586.
    1. Freed J, Chakrabarti L. Defining a role for hemoglobin in Parkinson’s disease. npj Park Dis. 2016;2:16021. doi: 10.1038/npjparkd.2016.21.
    1. Chen D, Kanthasamy AG, Reddy MB. EGCG protects against 6-OHDA-induced neurotoxicity in a cell culture model. Parkinsons Dis. 2015;2015:843906.
    1. Xu Q, Kanthasamy AG, Jin H, et al. Hepcidin plays a key role in 6-OHDA induced iron overload and apoptotic cell death in a cell culture model of Parkinson’s disease. Parkinsons Dis. 2016;2016:8684130.
    1. Salazar J, Mena N, Hunot S, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA. 2008;105:18578–18583. doi: 10.1073/pnas.0804373105.
    1. Howitt J, Gysbers AM, Ayton S, et al. Increased Ndfip1 in the substantia nigra of Parkinsonian brains is associated with elevated iron levels. PLoS ONE. 2014;9:e87119. doi: 10.1371/journal.pone.0087119.
    1. Howitt J, Putz U, Lackovic J, et al. Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci USA. 2009;106:15489–15494. doi: 10.1073/pnas.0904880106.
    1. Jiang H, Song N, Xu H, et al. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res. 2010;20:345–356. doi: 10.1038/cr.2010.20.
    1. He Q, Du T, Yu X, et al. DMT1 polymorphism and risk of Parkinson’s disease. Neurosci Lett. 2011;501:128–131. doi: 10.1016/j.neulet.2011.07.001.
    1. Castellani RJ, Siedlak SL, Perry G, et al. Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol. 2000;100:111–114. doi: 10.1007/s004010050001.
    1. Song N, Wang J, Jiang H, et al. Ferroportin1 and hephaestin overexpression attenuate iron-induced oxidative stress in MES23.5 dopaminergic cells. J Cell Biochem. 2010;110:1063–1072. doi: 10.1002/jcb.22617.
    1. Song N, Wang J, Jiang H, et al. Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med. 2010;48:332–341. doi: 10.1016/j.freeradbiomed.2009.11.004.
    1. Zhang H-Y, Wang N-D, Song N, et al. 6-Hydroxydopamine promotes iron traffic in primary cultured astrocytes. Biometals. 2013;26:705–714. doi: 10.1007/s10534-013-9647-x.
    1. Garton T, Keep RF, Hua Y, et al. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol. 2016;1:172–184. doi: 10.1136/svn-2016-000042.
    1. García-Yébenes I, Sobrado M, Moraga A, et al. Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochem Int. 2012;61:1364–1369. doi: 10.1016/j.neuint.2012.09.014.
    1. Mehdiratta M, Kumar S, Hackney D, et al. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke. 2008;39:1165–1170. doi: 10.1161/STROKEAHA.107.501213.
    1. Millerot-Serrurot E, Bertrand N, Mossiat C, et al. Temporal changes in free iron levels after brain ischemia. Neurochem Int. 2008;52:1442–1448. doi: 10.1016/j.neuint.2008.04.002.
    1. Kaluza J, Wolk A, Larsson SC. Heme iron intake and risk of stroke. Stroke. 2013;44:334–339. doi: 10.1161/STROKEAHA.112.679662.
    1. Ellervik C, Tybjaerg-Hansen A, Appleyard M, et al. Hereditary hemochromatosis genotypes and risk of ischemic stroke. Neurology. 2007;68:1025–1031. doi: 10.1212/01.wnl.0000257814.77115.d6.
    1. Azab SF, Akeel NE, Abdalhady MA, et al. Serum hepcidin levels in childhood-onset ischemic stroke. Medicine. 2016;95:e2921. doi: 10.1097/MD.0000000000002921.
    1. Słomka A, Świtońska M, Żekanowska E. Hepcidin levels are increased in patients with acute ischemic stroke: preliminary report. J Stroke Cerebrovasc Dis. 2015;24:1570–1576. doi: 10.1016/j.jstrokecerebrovasdis.2015.03.031.
    1. Petrova J, Manolov V, Vasilev V, et al. Ischemic stroke, inflammation, iron overload—connection to a hepcidin. Int J Stroke. 2016;11:NP16–NP17. doi: 10.1177/1747493015607509.
    1. Xiong X-Y, Chen J, Zhu W-Y, et al. Serum hepcidin concentrations correlate with serum iron level and outcome in patients with intracerebral hemorrhage. Neurol Sci. 2015;36:1843–1849. doi: 10.1007/s10072-015-2266-2.
    1. Sansing LH, Harris TH, Welsh FA, et al. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol. 2011;70:646–656. doi: 10.1002/ana.22528.
    1. Lin S, Yin Q, Zhong Q, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflamm. 2012;9:46.
    1. Ingrassia R, Lanzillotta A, Sarnico I, et al. 1B/(−)IRE DMT1 expression during brain ischemia contributes to cell death mediated by NF-κB/RelA acetylation at Lys310. PLoS ONE. 2012;7:e38019. doi: 10.1371/journal.pone.0038019.
    1. Yang L, Zhang B, Yin L, et al. Tanshinone IIA prevented brain iron dyshomeostasis in cerebral ischemic rats. Cell Physiol Biochem. 2011;27:23–30. doi: 10.1159/000325202.
    1. Tan G, Liu L, He Z, et al. Role of hepcidin and its downstream proteins in early brain injury after experimental subarachnoid hemorrhage in rats. Mol Cell Biochem. 2016;418:31–38. doi: 10.1007/s11010-016-2730-1.
    1. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–372. doi: 10.1038/nrn3880.
    1. Ceccarelli A, Filippi M, Neema M, et al. T2 hypointensity in the deep gray matter of patients with benign multiple sclerosis. Mult Scler J. 2009;15:678–686. doi: 10.1177/1352458509103611.
    1. Stankiewicz JM, Neema M, Ceccarelli A. Iron and multiple sclerosis. Neurobiol Aging. 2014;35:S51–S58. doi: 10.1016/j.neurobiolaging.2014.03.039.
    1. van Rensburg SJ, Kotze MJ, van Toorn R. The conundrum of iron in multiple sclerosis–time for an individualised approach. Metab Brain Dis. 2012;27:239–253. doi: 10.1007/s11011-012-9290-1.
    1. Ellidag HY, Kurtulus F, Yaman A, et al. Serum iron metabolism markers including hepcidin in multiple sclerosis patients. Neurochem J. 2014;8:226–230. doi: 10.1134/S1819712414030040.
    1. Hametner S, Wimmer I, Haider L, et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74:848–861. doi: 10.1002/ana.23974.
    1. Zarruk JG, Berard JL, Passos dos Santos R, et al. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Neurobiol Dis. 2015;81:93–107. doi: 10.1016/j.nbd.2015.02.001.
    1. Gajowiak A, Styś A, Starzyński RR, et al. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis. Front Mol Neurosci. 2016;8:82. doi: 10.3389/fnmol.2015.00082.
    1. Su XW, Simmons Z, Mitchell RM, et al. Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. JAMA Neurol. 2013;31:703–706.
    1. Veyrat-Durebex C, Corcia P, Mucha A, et al. Iron metabolism disturbance in a French cohort of ALS patients. Biomed Res Int. 2014;2014:485723. doi: 10.1155/2014/485723.
    1. Jeong SY, Rathore KI, Schulz K, et al. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 2009;29:610–619. doi: 10.1523/JNEUROSCI.5443-08.2009.
    1. Kwan JY, Jeong SY, Van Gelderen P, et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS ONE. 2012;7:e35241. doi: 10.1371/journal.pone.0035241.
    1. Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci. 2014;6:173. doi: 10.3389/fnagi.2014.00173.
    1. Wang Q, Zhang X, Chen S, et al. Prevention of motor neuron degeneration by novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis. Neurodegener Dis. 2011;8:310–321. doi: 10.1159/000323469.
    1. Halon M, Kaczor JJ, Ziolkowski W, et al. Changes in skeletal muscle iron metabolism outpace amyotrophic lateral sclerosis onset in transgenic rats bearing the G93A hmSOD1 gene mutation. Free Radic Res. 2014;48:1363–1370. doi: 10.3109/10715762.2014.955484.
    1. Yi Y, Hsieh I-Y, Huang X, et al. Glioblastoma stem-like cells: characteristics, microenvironment, and therapy. Front Pharmacol. 2016;7:477. doi: 10.3389/fphar.2016.00477.
    1. Schonberg DL, Miller TE, Wu Q, et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell. 2015;28:441–455. doi: 10.1016/j.ccell.2015.09.002.
    1. Legendre C, Avril S, Guillet C. Low oxygen tension reverses antineoplastic effect of iron chelator deferasirox in human glioblastoma cells. BMC Cancer. 2016;16:51. doi: 10.1186/s12885-016-2074-y.
    1. Weinstock LB, Walters AS, Paueksakon P. Restless legs syndrome—theoretical roles of inflammatory and immune mechanisms. Sleep Med Rev. 2012;16:341–354. doi: 10.1016/j.smrv.2011.09.003.
    1. Rizzo G, Manners D, Testa C, et al. Low brain iron content in idiopathic restless legs syndrome patients detected by phase imaging. Mov Disord. 2013;28:1886–1890. doi: 10.1002/mds.25576.
    1. Clardy SL, Wang X, Boyer PJ, et al. Is ferroportin–hepcidin signaling altered in restless legs syndrome? J Neurol Sci. 2006;247:173–179. doi: 10.1016/j.jns.2006.04.008.
    1. Haba-Rubio J, Staner L, Petiau C, et al. Restless legs syndrome and low brain iron levels in patients with haemochromatosis. J Neurol Neurosurg Psychiatry. 2005;76:1009–1010. doi: 10.1136/jnnp.2003.030536.
    1. Connor JR, Ponnuru P, Wang X-S, et al. Profile of altered brain iron acquisition in restless legs syndrome. Brain. 2011;134:959–968. doi: 10.1093/brain/awr012.
    1. Muller M, Leavitt BR. Iron dysregulation in Huntington’s disease. J Neurochem. 2014;130:328–350. doi: 10.1111/jnc.12739.
    1. van Bergen JMG, Hua J, Unschuld PG, et al. Quantitative susceptibility mapping suggests altered brain iron in premanifest Huntington disease. AJNR Am J Neuroradiol. 2016;37:789–796. doi: 10.3174/ajnr.A4617.
    1. Phillips O, Squitieri F, Sanchez-Castaneda C, et al. The corticospinal tract in Huntington’s disease. Cereb Cortex. 2015;25:2670–2682. doi: 10.1093/cercor/bhu065.
    1. Bartzokis G, Cummings J, Perlman S, et al. Increased basal ganglia iron levels in Huntington disease. Arch Neurol. 1999;56:569. doi: 10.1001/archneur.56.5.569.
    1. Chen J, Marks E, Lai B, et al. Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS ONE. 2013;8:e77023. doi: 10.1371/journal.pone.0077023.
    1. Anzovino A, Lane DJR, Huang ML-H, et al. Fixing frataxin: “ironing out” the metabolic defect in Friedreich’s ataxia. Br J Pharmacol. 2014;171:2174–2190. doi: 10.1111/bph.12470.
    1. Selvadurai LP, Harding IH, Corben LA, et al. Cerebral abnormalities in Friedreich ataxia: a review. Neurosci Biobehav Rev. 2017
    1. Koeppen AH, Ramirez RL, Yu D, et al. Friedreich’s ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus. Cerebellum. 2012;11:845–860. doi: 10.1007/s12311-012-0383-5.
    1. Santos R, Lefevre S, Sliwa D, et al. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal. 2010;13:651–690. doi: 10.1089/ars.2009.3015.
    1. Koeppen AH, Ramirez RL, Becker AB, et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE. 2015;10:e0116396. doi: 10.1371/journal.pone.0116396.
    1. Lu C, Schoenfeld R, Shan Y, et al. Frataxin deficiency induces Schwann cell inflammation and death. Biochim Biophys Acta Mol Basis Dis. 2009;1792:1052–1061. doi: 10.1016/j.bbadis.2009.07.011.
    1. Koeppen AH, Morral JA, Davis AN, et al. The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol. 2009;118:763–776. doi: 10.1007/s00401-009-0589-x.
    1. Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov. 2017;16:400–423. doi: 10.1038/nrd.2016.248.
    1. Farajdokht F, Soleimani M, Mehrpouya S, et al. The role of hepcidin in chronic mild stress-induced depression. Neurosci Lett. 2015;588:120–124. doi: 10.1016/j.neulet.2015.01.008.

Source: PubMed

3
S'abonner