Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity

Artur Adamczak, Marcin Ożarowski, Tomasz M Karpiński, Artur Adamczak, Marcin Ożarowski, Tomasz M Karpiński

Abstract

Curcumin, a principal bioactive substance of turmeric (Curcuma longa L.), is reported as a strong antioxidant, anti-inflammatory, antibacterial, antifungal, and antiviral agent. However, its antimicrobial properties require further detailed investigations into clinical and multidrug-resistant (MDR) isolates. In this work, we tested curcumin's efficacy against over 100 strains of pathogens belonging to 19 species. This activity was determined by the broth microdilution method and by calculating the minimum inhibitory concentration (MIC). Our findings confirmed a much greater sensitivity of Gram-positive than Gram-negative bacteria. This study exhibited a significantly larger variation in the curcumin activity than previous works and suggested that numerous clinical strains of widespread pathogens have a poor sensitivity to curcumin. Similarly, the MICs of the MDR types of Staphylococcus aureus, S. haemolyticus, Escherichia coli, and Proteus mirabilis were high (≥2000 µg/mL). However, curcumin was effective against some species and strains: Streptococcus pyogenes (median MIC = 31.25 µg/mL), methicillin-sensitive S. aureus (250 µg/mL), Acinetobacter lwoffii (250 µg/mL), and individual strains of Enterococcus faecalis and Pseudomonas aeruginosa (62.5 µg/mL). The sensitivity of species was not associated with its affiliation to the genus, and it could differ a lot (e.g., S. pyogenes, S. agalactiae and A. lwoffii, A. baumannii). Hence, curcumin can be considered as a promising antibacterial agent, but with a very selective activity.

Keywords: Curcuma longa; antibacterial activity; antifungal activity; curcumin; minimum inhibitory concentration (MIC); multidrug-resistant (MDR) strains.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structure of curcumin.

References

    1. Basnet P., Skalko-Basnet N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011;16:4567–4598. doi: 10.3390/molecules16064567.
    1. Siviero A., Gallo E., Maggini V., Gori L., Mugelli A., Firenzuoli F., Vannacci A. Curcumin, a golden spice with a low bioavailability. J. Herb. Med. 2015;5:57–70. doi: 10.1016/j.hermed.2015.03.001.
    1. Kotha R.R., Luthria D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 2019;24:2930. doi: 10.3390/molecules24162930.
    1. Prasad S., Aggarwal B.B. Turmeric, the golden spice. In: Benzie I.F.F., Wachtel-Galor S., editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. CRC Press/Taylor & Francis; Boca Raton, FL, USA: 2011. pp. 263–288.
    1. Nair K.P. Turmeric (Curcuma longa L.) and Ginger (Zingiber officinale Rosc.)—World’s Invaluable Medicinal Spices. The Agronomy and Economy of Turmeric and Ginger. 1st ed. Springer Nature; Cham, Switzerland: 2019. pp. 1–243.
    1. Kwiecien S., Magierowski M., Majka J., Ptak-Belowska A., Wojcik D., Sliwowski Z., Magierowska K., Brzozowski T. Curcumin: A potent protectant against esophageal and gastric disorders. Int. J. Mol. Sci. 2019;20:1477. doi: 10.3390/ijms20061477.
    1. Cheng Y.T., Lu C.C., Yen G.C. Phytochemicals enhance antioxidant enzyme expression to protect against NSAID-induced oxidative damage of the gastrointestinal mucosa. Mol. Nutr. Food Res. 2017;61 doi: 10.1002/mnfr.201600659.
    1. Singh D.P., Borse S.P., Rana R., Nivsarkar M. Curcumin, a component of turmeric, efficiently prevents diclofenac sodium-induced gastroenteropathic damage in rats: A step towards translational medicine. Food Chem. Toxicol. 2017;108:43–52. doi: 10.1016/j.fct.2017.07.034.
    1. Hatcher H., Planalp R., Cho J., Torti F.M., Torti S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008;65:1631–1652. doi: 10.1007/s00018-008-7452-4.
    1. Marchiani A., Rozzo C., Fadda A., Delogu G., Ruzza P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem. 2014;21:204–222. doi: 10.2174/092986732102131206115810.
    1. Hewlings S.J., Kalman D.S. Curcumin: A review of its’ effects on human health. Foods. 2017;6:92. doi: 10.3390/foods6100092.
    1. Moghadamtousi S.Z., Kadir H.A., Hassandarvish P., Tajik H., Abubakar S., Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed. Res. Int. 2014;2014:186864. doi: 10.1155/2014/186864.
    1. Praditya D., Kirchhoff L., Brüning J., Rachmawati H., Steinmann J., Steinmann E. Anti-infective properties of the golden spice curcumin. Front. Microbiol. 2019;10:912. doi: 10.3389/fmicb.2019.00912.
    1. Rai M., Ingle A.P., Pandit R., Paralikar P., Anasane N., Santos C.A.D. Curcumin and curcumin-loaded nanoparticles: Antipathogenic and antiparasitic activities. Expert. Rev. Anti-Infect. Ther. 2020;18:367–379. doi: 10.1080/14787210.2020.1730815.
    1. Gupta S.C., Patchva S., Aggarwal B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013;15:195–218. doi: 10.1208/s12248-012-9432-8.
    1. Azhdari M., Karandish M., Mansoori A. Metabolic benefits of curcumin supplementation in patients with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019;33:1289–1301. doi: 10.1002/ptr.6323.
    1. Chainoglou E., Hadjipavlou-Litina D. Curcumin in health and diseases: Alzheimer’s disease and curcumin analogues, derivatives, and hybrids. Int. J. Mol. Sci. 2020;21:1975. doi: 10.3390/ijms21061975.
    1. Wang Y., Lu J., Jiang B., Guo J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment (Review) Oncol. Lett. 2020;19:3059–3070. doi: 10.3892/ol.2020.11437.
    1. Schraufstätter E., Bernt H. Antibacterial action of curcumin and related compounds. Nature. 1949;164:456–457. doi: 10.1038/164456a0.
    1. Lutomski J., Kędzia B., Dębska W. Wirkung des Äthanolextraktes und aktiver Substanzen aus Curcuma longa auf Bakterien und Pilze (Effect of the ethanol extract and active substances from Curcuma longa on bacteria and fungi) Planta Med. 1974;26:9–19. doi: 10.1055/s-0028-1097963.
    1. Loo C.Y., Rohanizadeh R., Young P.M., Traini D., Cavaliere R., Whitchurch C.B., Lee W.H. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J. Agric. Food Chem. 2016;64:2513–2522. doi: 10.1021/acs.jafc.5b04559.
    1. Shukla A., Parmar P., Rao P., Goswami D., Saraf M. Twin peaks: Presenting the antagonistic molecular interplay of curcumin with LasR and LuxR quorum sensing pathways. Curr. Microbiol. 2020 doi: 10.1007/s00284-020-01997-2.
    1. Abdulrahman H., Misba L., Ahmad S., Khan A.U. Curcumin induced photodynamic therapy mediated suppression of quorum sensing pathway of Pseudomonas aeruginosa: An approach to inhibit biofilm in vitro. Photodiagn. Photodyn. Ther. 2020;30:101645. doi: 10.1016/j.pdpdt.2019.101645.
    1. Packiavathy I.A., Priya S., Pandian S.K., Ravi A.V. Inhibition of biofilm development of uropathogens by curcumin—An anti-quorum sensing agent from Curcuma longa. Food Chem. 2014;148:453–460. doi: 10.1016/j.foodchem.2012.08.002.
    1. Das P., Gupta G., Velu V., Awasthi R., Dua K., Malipeddi H. Formation of struvite urinary stones and approaches towards the inhibition—A review. Biomed. Pharmacother. 2017;96:361–370. doi: 10.1016/j.biopha.2017.10.015.
    1. Teow S.Y., Liew K., Ali S.A., Khoo A.S.B., Peh S.C. Antibacterial action of curcumin against Staphylococcus aureus: A brief review. J. Trop. Med. 2016;2016:2853045. doi: 10.1155/2016/2853045.
    1. Bahari S., Zeighami H., Mirshahabi H., Roudashti S., Haghi F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J. Glob. Antimicrob. Resist. 2017;10:21–28. doi: 10.1016/j.jgar.2017.03.006.
    1. Rangel-Castañeda I.A., Cruz-Lozano J.R., Zermeño-Ruiz M., Cortes-Zarate R., Hernández-Hernández L., Tapia-Pastrana G., Castillo-Romero A. Drug susceptibility testing and synergistic antibacterial activity of curcumin with antibiotics against enterotoxigenic Escherichia coli. Antibiotics. 2019;8:43. doi: 10.3390/antibiotics8020043.
    1. Sharma M., Manoharlal R., Negi A.S., Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res. 2010;10:570–578. doi: 10.1111/j.1567-1364.2010.00637.x.
    1. Lawhavinit O., Kongkathip N., Kongkathip B. Antimicrobial activity of curcuminoids from Curcuma longa L. on pathogenic bacteria of shrimp and chicken. Kasetsart J. Nat. Sci. 2010;44:364–371.
    1. Betts J.W., Sharili A.S., La Ragione R.M., Wareham D.W. In vitro antibacterial activity of curcumin-polymyxin B combinations against multidrug-resistant bacteria associated with traumatic wound infections. J. Nat. Prod. 2016;79:1702–1706. doi: 10.1021/acs.jnatprod.6b00286.
    1. Sasidharan N.K., Sreekala S.R., Jacob J., Nambisan B. In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea. Biomed. Res. Int. 2014;2014:561456. doi: 10.1155/2014/561456.
    1. Wang Y., Yan M., Ma R., Ma S. Synthesis and antibacterial activity of novel 4-bromo-1H-indazole derivatives as FtsZ inhibitors. Arch. Pharm. Chem. Life Sci. 2015;348:266–274. doi: 10.1002/ardp.201400412.
    1. Gunes H., Gulen D., Mutlu R., Gumus A., Tas T., Topkaya A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health. 2016;32:246–250. doi: 10.1177/0748233713498458.
    1. Silva A.C.D., Santos P.D.F., Palazzi N.C., Leimann F.V., Fuchs R.H.B., Bracht L., Gonçalves O.H. Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots. Food Funct. 2017;8:1851–1858. doi: 10.1039/C7FO00452D.
    1. Khan M., Ali M., Shah W., Shah A., Yasinzai M.M. Curcumin-loaded self-emulsifying drug delivery system (cu-SEDDS): A promising approach for the control of primary pathogen and secondary bacterial infections in cutaneous leishmaniasis. Appl. Microbiol. Biotechnol. 2019;103:7481–7490. doi: 10.1007/s00253-019-09990-x.
    1. Polaquini C.R., Morão L.G., Nazaré A.C., Torrezan G.S., Dilarri G., Cavalca L.B., Campos D.L., Silva I.C., Pereira J.A., Scheffers D.J., et al. Antibacterial activity of 3,3′-dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorg. Chem. 2019;90:103031. doi: 10.1016/j.bioorg.2019.103031.
    1. Srivastava P., Shukla M., Kaul G., Chopra S., Patra A.K. Rationally designed curcumin based ruthenium(II) antimicrobials effective against drug-resistant Staphylococcus aureus. Dalton Trans. 2019;48:11822–11828. doi: 10.1039/C9DT01650C.
    1. Neelakantan P., Subbarao C., Sharma S., Subbarao C.V., Garcia-Godoy F., Gutmann J.L. Effectiveness of curcumin against Enterococcus faecalis biofilm. Acta Odontol. Scand. 2013;71:1453–1457. doi: 10.3109/00016357.2013.769627.
    1. Marickar R.F., Geetha R.V., Neelakantan P. Efficacy of contemporary and novel intracanal medicaments against Enterococcus faecalis. J. Clin. Pediatr. Dent. 2014;39:47–50. doi: 10.17796/jcpd.39.1.wmw9768314h56666.
    1. Yun D.G., Lee D.G. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl. Microbiol. Biotechnol. 2016;100:5505–5514. doi: 10.1007/s00253-016-7415-x.
    1. Raorane C.J., Lee J.H., Kim Y.G., Rajasekharan S.K., García-Contreras R., Lee J. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol. 2019;10:990. doi: 10.3389/fmicb.2019.00990.
    1. Betts J.W., Wareham D.W. In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii. BMC Microbiol. 2014;14:172. doi: 10.1186/1471-2180-14-172.
    1. Tajbakhsh S., Mohammadi K., Deilami I., Zandi K., Fouladvand M., Ramedani E., Asayesh G. Antibacterial activity of indium curcumin and indium diacetylcurcumin. Afr. J. Biotechnol. 2008;7:3832–3835.
    1. Sharifi S., Fathi N., Memar M.Y., Khatibi S.M.H., Khalilov R., Negahdari R., Vahed S.Z., Dizaj S.M. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother. Res. 2020 doi: 10.1002/ptr.6658.
    1. Tyagi P., Singh M., Kumari H., Kumari A., Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE. 2015;10:e0121313. doi: 10.1371/journal.pone.0121313.
    1. Kaur S., Modi N.H., Panda D., Roy N. Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ—A structural insight to unveil antibacterial activity of curcumin. Eur. J. Med. Chem. 2010;45:4209–4214. doi: 10.1016/j.ejmech.2010.06.015.
    1. Alalwan H., Rajendran R., Lappin D.F., Combet E., Shahzad M., Robertson D., Nile C.J., Williams C., Ramage G. The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials. Front. Microbiol. 2017;8:659. doi: 10.3389/fmicb.2017.00659.
    1. Sharma G., Raturi K., Dang S., Gupta S., Gabrani R. Combinatorial antimicrobial effect of curcumin with selected phytochemicals on Staphylococcus epidermidis. J. Asian Nat. Prod. Res. 2014;16:535–541. doi: 10.1080/10286020.2014.911289.
    1. Li X., Yin L., Ramage G., Li B., Tao Y., Zhi Q., Lin H., Zhou Y. Assessing the impact of curcumin on dual-species biofilms formed by Streptococcus mutans and Candida albicans. Microbiol. Open. 2019;8:e937. doi: 10.1002/mbo3.937.
    1. Sivasothy Y., Sulaiman S.F., Ooi K.L., Ibrahim H., Awang K. Antioxidant and antibacterial activities of flavonoids and curcuminoids from Zingiber spectabile Griff. Food Control. 2013;30:714–720. doi: 10.1016/j.foodcont.2012.09.012.
    1. Karpiński T.M., Adamczak A. Fucoxanthin—An antibacterial carotenoid. Antioxidants. 2019;8:239. doi: 10.3390/antiox8080239.
    1. Breijyeh Z., Jubeh B., Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25:1340. doi: 10.3390/molecules25061340.
    1. Altunatmaz S.S., Aksu F.Y., Issa G., Kahraman B.B., Altiner D.D., Buyukunal S. Antimicrobial effects of curcumin against L. monocytogenes, S. aureus, S.Typhimurium and E. coli O157: H7 pathogens in minced meat. Vet. Med. 2016;61:256–262. doi: 10.17221/8880-VETMED.
    1. Gómez S., Querol-García J., Sánchez-Barrón G., Subias M., González-Alsina À., Franco-Hidalgo V., Albertí S., de Córdoba S.R., Fernández F.J., Vega M.C. The antimicrobials anacardic acid and curcumin are not-competitive inhibitors of Gram-positive bacterial pathogenic glyceraldehyde-3-phosphate dehydrogenase by a mechanism unrelated to human C5a anaphylatoxin binding. Front. Microbiol. 2019;10:326. doi: 10.3389/fmicb.2019.00326.
    1. Mun S.H., Joung D.K., Kim Y.S., Kang O.H., Kim S.B., Seo Y.S., Kim Y.C., Lee D.S., Shin D.W., Kweon K.T., et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20:714–718. doi: 10.1016/j.phymed.2013.02.006.
    1. Rudrappa T., Bais H.P. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J. Agric. Food Chem. 2008;56:1955–1962. doi: 10.1021/jf072591j.
    1. Pandey A., Gupta R.K., Bhargava A., Agrawal B. Antibacterial activities of curcumin bioconjugates. Int. J. Pharmacol. 2011;7:874–879. doi: 10.3923/ijp.2011.874.879.
    1. Shariati A., Asadian E., Fallah F., Azimi T., Hashemi A., Sharahi J.Y., Moghadam M.T. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infect. Drug Resist. 2019;12:2223–2235. doi: 10.2147/IDR.S213200.
    1. Prasad E., Hameeda B., Rao A.B., Reddy G. Biotransformation of curcumin for improved biological activity and antiproliferative activity on acute HT-29 human cell lines. Indian J. Biotechnol. 2014;13:324–329.
    1. Manchanda G., Sodhi R.K., Jain U.K., Chandra R., Madan J. Iodinated curcumin bearing dermal cream augmented drug delivery, antimicrobial and antioxidant activities. J. Microencapsul. 2018;35:49–61. doi: 10.1080/02652048.2018.1425749.
    1. Bhawana, Basniwal R.K., Buttar H.S., Jain V.K., Jain N. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J. Agric. Food Chem. 2011;59:2056–2061. doi: 10.1021/jf104402t.
    1. Narayanan V.S., Muddaiah S., Shashidara R., Sudheendra U.S., Deepthi N.C., Samaranayake L. Variable antifungal activity of curcumin against planktonic and biofilm phase of different candida species. Indian J. Dent. Res. 2020;31:145–148. doi: 10.4103/ijdr.IJDR_521_17.
    1. Neelofar K., Shreaz S., Rimple B., Muralidhar S., Nikhat M., Khan L.A. Curcumin as a promising anticandidal of clinical interest. Can. J. Microbiol. 2011;57:204–210. doi: 10.1139/W10-117.
    1. Adamczak A., Ożarowski M., Karpiński T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2020;9:109. doi: 10.3390/jcm9010109.
    1. EUCAST MIC Determination of Non-Fastidious and Fastidious Organisms. [(accessed on 23 September 2019)]; Available online: .
    1. CLSI . Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard. 11th ed. Volume 32 Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2012. CLSI document M02-A11.

Source: PubMed

3
S'abonner