Tamarindus indica Seed Extract-Based Botanical Compositions Alleviate Knee Pain and Improve Joint Function in Mild-to-Moderate Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Clinical Study

Sanjeev Kumar Kare, Vineet Vinay, Katarzyna Maresz, Victor Prisk, Hogne Vik, Sanjeev Kumar Kare, Vineet Vinay, Katarzyna Maresz, Victor Prisk, Hogne Vik

Abstract

Objective: Knee pain and reduced joint function affect the quality of life of subjects suffering from knee osteoarthritis (KOA). The present randomized, double-blind, placebo-controlled study aimed to assess the clinical efficacy of two botanical compositions, NXT15906F6 and NXT19185, in pain relief and improvement in the musculoskeletal function of knee osteoarthritis (KOA) subjects. NXT15906F6 contains ethanol/aqueous extract of Tamarindus indica seeds and aqueous ethanol extract of Curcuma longa rhizome, and NXT19185 is a combination of NXT15906F6 and an aqueous ethanol extract of Garcinia mangostana fruit rind.

Methods: The present trial recruited ninety subjects with mild-to-moderate KOA, using a radiographic Kellgren-Lawrence (KL) grading system. The participants were randomized into one of three groups (n = 30) to receive either placebo, NXT15906F6 (250 mg/day), or NXT19185 (300 mg/day) for 56 days. The change in Western Ontario and McMaster Universities Arthritis Index (WOMAC) score was the primary efficacy measure of the study. Improvements in the functional scores, serum proinflammatory modulators, and cartilage degradation product in the urine samples were the secondary efficacy measures. Twenty-seven subjects in each group completed the trial.

Results: After the trial, NXT15906F6 and NXT19185 significantly improved (P < 0.05) the WOMAC scores from baseline compared with placebo. In the subgroup analyses, the knee pain and functional scores were significantly improved in the KL-II and KL-III grade KOA subjects. At the end of the study, the NXT15906F6- and NXT19185-supplemented participants showed significant (P < 0.05) improvement in the functional scores, inflammatory status, and collagen breakdown product in the urine samples. Summary. The present study demonstrates that NXT15906F6 and NXT19185 supplementations reduce knee pain and improve the musculoskeletal function of KOA subjects. Moreover, these herbal compositions helped reduce inflammation and inflammation-induced cartilage degeneration in the participants. NXT15906F6 and NXT19185 supplementations are further documented to be tolerable and safe to the participants.

Conflict of interest statement

The authors declare that there are no conflicts of interest in the present research or publishing the data.

Copyright © 2022 Sanjeev Kumar Kare et al.

Figures

Figure 1
Figure 1
Typical HPLC chromatograms of NXT15906F6 (a) and NXT19185 (b). The representative chromatograms show the peaks of procyanidin B2, procyanidin C1, epicatechin tetramer, bisdemthoxycurcumin, demethoxycurcumin, curcumin, and α-mangostin. The elution was detected at 210 nm.
Figure 2
Figure 2
CONSORT diagram shows the flow of the trial process. Knee pain, musculoskeletal functions, and serum hsCRP were assessed at baseline and days 5, 28, and 56 of the study. Serum TNF-α, IL-6, MMP3, and urinary C-terminal cross-linked telopeptide of type II collagen (uCTX-II) were measured at baseline and end of the study.
Figure 3
Figure 3
NXT15906F6 and NXT19185 supplementation improved serum markers in the study participants. (a–d) Mean ± SD of serum TNF-α (n = 27), IL-6 (n = 23), hsCRP (n = 27), and MMP3 (n = 27) levels, respectively. and $ indicate significance (P < 0.05) in “within the group” (vs. baseline) and “between the groups” (vs. placebo) comparison analysis, respectively, using unequal variance t-test.
Figure 4
Figure 4
NXT15906F6 and NXT19185 supplementations reduce urinary CTX-II in the participants. Bars represent mean ± SD of normalized uCTX-II (ng/mmol creatinine) (n = 26). In each urine sample, CTX-II data were normalized with creatinine concentration. and $ indicate significance (P < 0.05) in “within the group” (vs. baseline) and “between the groups” (vs. placebo) comparison analysis, respectively, using unequal variance t-test.
Figure 5
Figure 5
A schematic diagram illustrating the possible mechanisms of NXT15906F6 and NXT19185 in alleviating the symptoms of knee osteoarthritis. ECM, extracellular matrix; PGE2, prostaglandin E2; ROS, reactive oxygen species.

References

    1. Cote L. G. Management of osteoarthritis. Journal of the American Association of Nurse Practitioners . 2001;13:495–501.
    1. Man G. S., Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. Journal of Medicine and Life . 2014;7(1):37–41.
    1. Safiri S., Kolahi A. A., Smith E., et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Annals of the Rheumatic Diseases . 2020;79(6):819–828. doi: 10.1136/annrheumdis-2019-216515.
    1. Zhang Y., Jordan J. M. Epidemiology of osteoarthritis. Clinics in Geriatric Medicine . 2010;26(3):355–369. doi: 10.1016/j.cger.2010.03.001.
    1. Hunter D. J., McDougall J. J., Keefe F. J. The symptoms of osteoarthritis and the genesis of pain. Rheumatic Disease Clinics of North America . 2008;34(3):623–643. doi: 10.1016/j.rdc.2008.05.004.
    1. Ji X., Jhang H. Current strategies for the treatment of early stage osteoarthritis. Frontiers of Mechanical Engineering . 2019;5 doi: 10.3389/fmech.2019.00057.57
    1. Hochberg M., Guermazi A., Guehring H., Aydemir A., Wax S. OP0059 Efficacy and safety of intra-articular sprifermin in symptomatic radiographic knee osteoarthritis: pre-specified analysis of 3-year data from a 5-year randomised, placebo-controlled, phase II study. Annals of the Rheumatic Diseases . 2018;77(suppl. 2):80–81.
    1. Lohmander L. S., Hellot S., Dreher D., et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis & Rheumatology . 2014;66(7):1820–1831. doi: 10.1002/art.38614.
    1. Kennedy S., Ghandehari H., Swearingen C., Tambiah J., Hochberg M. OP0061 Treatment of knee osteoarthritis with sm04690 improved womac a1 ‘pain on walking’ – results from a 52 week, randomised, double-blind, placebo-controlled, phase 2 study of a novel, intra-articular, Wnt pathway inhibitor. Annals of the Rheumatic Diseases . 2018;77(suppl. 2):80–81.
    1. Akhtar N., Haqqi T. M. Current nutraceuticals in the management of osteoarthritis: a review. Therapeutic Advances in Musculoskeletal Disease . 2012;4(3):181–207. doi: 10.1177/1759720x11436238.
    1. Askari A., Ravansalar S. A., Naghizadeh M. M., et al. The efficacy of topical sesame oil in patients with knee osteoarthritis: a randomized double-blinded active-controlled non-inferiority clinical trial. Complementary Therapies in Medicine . 2019;47 doi: 10.1016/j.ctim.2019.08.017.102183
    1. Heidari-Beni M., Moravejolahkami A. R., Gorgian P., Askari G., Tarrahi M. J. Herbal formulation turmeric extract, black pepper, and ginger versus Naproxen for chronic knee osteoarthritis: a randomized, double-blind, controlled clinical trial. Phytotherapy Research . 2020;34(8):2067–2073.
    1. Farpour H. R., Rajabi N., Ebrahimi B. The efficacy of harpagophytum procumbens (teltonal) in patients with knee osteoarthritis: a randomized active-controlled clinical trial. Evidence-based Complementary and Alternative Medicine . 2021;2021 doi: 10.1155/2021/5596892.5596892
    1. Badmaev V., Vik H., Stohs S. J., Galluzzo F. Safety and toxicological evaluation of NXT15906F6 (TamaFlex®): a food-derived botanical composition containing standardized extracts of Tamarindus indica seeds and Curcuma longa rhizomes. Toxicology Research and Application . 2018;2:1–14. doi: 10.1177/2397847317749240.
    1. Rao P. S., Ramanjaneyulu Y. S., Prisk V. R., Schurgers L. J. A combination of Tamarindus indica seeds and Curcuma longa rhizome extracts improves knee joint function and alleviates pain in non-arthritic adults following physical activity. International Journal of Medical Sciences . 2019;16(6):845–853. doi: 10.7150/ijms.32505.
    1. Zohrameena S., Mujahid M., Bagga P., Khalid M. Medicinal uses & pharmacological activity of Tamarindus indica. World Journal of Pharmacy and Pharmaceutical Sciences . 2017;5(2):121–133.
    1. Thakur R. S., Puri H. S., Husain A. Major Medicinal Plants of India . Lucknow, India: Central Institute of Medicinal and Aromatic Plants; 1989.
    1. Martinez-Micaelo N., González-Abuín N., Pinent M., Blay M. T. Procyanidins and inflammation: molecular targets and health implications. BioFactors . 2012;38(4):257–265. doi: 10.1002/biof.1019.
    1. Sundaram M. S., Hemshekhar M., Santhosh M. S. Tamarind seed (Tamarindus indica) extract ameliorates adjuvant induced arthritis via regulating the mediators of cartilage/bone degradation, inflammation and oxidative stress. Scientific Reports . 2015;5 doi: 10.1038/srep11117.11117
    1. Ray S. D., Kumar M. A., Bagchi D. A novel proanthocyanidin IH636 grape seed extract increases in vivo bcl-xl expression and prevents acetaminophen-induced programmed and unprogrammed cell death in mouse liver. Archives of Biochemistry and Biophysics . 1999;369(1):42–58. doi: 10.1006/abbi.1999.1333.
    1. Derosa G., Maffioli P., Simental-Mendía L. E., Bo S., Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacological Research . 2016;111:394–404. doi: 10.1016/j.phrs.2016.07.004.
    1. Rahmani A. H., Alsahli M. A., Aly S. M., Khan M. A., Aldebasi Y. H. Role of curcumin in disease prevention and treatment. Advanced Biomedical Research . 2018;7(1):38. doi: 10.4103/abr.abr_147_16.
    1. Ilyas M., Kamil M., Parveen M., Sohrab Khan M. Isoflavones from Garcinia nervosa. Phytochemistry . 1994;36(3):807–809. doi: 10.1016/s0031-9422(00)89823-4.
    1. Ghasemzadeh A., Jaafar H., Baghdadi A., Tayebi-Meigooni A. Alpha-mangostin-rich extracts from mangosteen pericarp: optimization of green extraction protocol and evaluation of biological activity. Molecules . 2018;23(8):p. 1852. doi: 10.3390/molecules23081852.
    1. Weecharangsan W., Opanasopit P., Sukma M., Ngawhirunpat T., Sotanaphun U., Siripong P. Antioxidative and neuroprotective activities of extracts from the fruit hull of mangosteen (Garcinia mangostana Linn.) Medical Principles and Practice . 2006;15(4):281–287. doi: 10.1159/000092991.
    1. Nakatani K., Yamakuni T., Kondo N., et al. γ-Mangostin inhibits inhibitor-κb kinase activity and decreases lipopolysaccharide-induced cyclooxygenase-2 gene expression in C6 rat glioma cells. Molecular Pharmacology . 2004;66(3):667–674. doi: 10.1124/mol.104.002626.
    1. Sampath P. D., Vijayaragavan K. Ameliorative prospective of alpha-mangostin, a xanthone derivative from Garcinia mangostana against beta-adrenergic cathecolamine-induced myocardial toxicity and anomalous cardiac TNF-alpha and COX-2 expressions in rats. Experimental & Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie . 2008;60(4-5):357–364. doi: 10.1016/j.etp.2008.02.006.
    1. Altman R., Asch E., Bloch D., et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis & Rheumatism . 1986;29(8):1039–1049. doi: 10.1002/art.1780290816.
    1. Kellgren J. H., Lawrence J. S. Radiological assessment of osteo-arthrosis. Annals of the Rheumatic Diseases . 1957;16(4):494–502. doi: 10.1136/ard.16.4.494.
    1. Chapman C. R., Casey K. L., Dubner R., Foley K. M., Gracely R. H., Reading A. E. Pain measurement: an overview. Pain . 1985;22(1):1–31. doi: 10.1016/0304-3959(85)90145-9.
    1. SAS/STAT® 14.1 User’s Guide. 2015 . Cary, NC, USA: SAS Institute Inc.; 2015.
    1. Bellamy N., Buchanan W. W., Goldsmith C. H., Campbell J., Stitt L. W. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. Journal of Rheumatology . 1988;15(12):1833–1840.
    1. Lequesne M. G., Mery C., Samson M., Geraerd P. Indexes of severity for osteoarthritis of the hip and knee validation-value in comparison with other assessment tests. Scandinavian Journal of Rheumatology . 1987;16(suppl 65):85–89. doi: 10.3109/03009748709102182.
    1. Bennell K., Dobson F., Hinman R. Measures of physical performance assessments: self-paced walk test (SPWT), stair climb test (SCT), six-minute walk test (6MWT), chair stand test (CST), timed up & go (TUG), sock test, lift and carry test (LCT), and car task. Arthritis Care & Research . 2011;63(S11):S350–S370. doi: 10.1002/acr.20538.
    1. Steultjens M. P. M., Dekker J., Van Baar M. E., Oostendorp R. A. B., Bijlsma J. W. J. Range of joint motion and disability in patients with osteoarthritis of the knee or hip. Rheumatology . 2000;39(9):955–961. doi: 10.1093/rheumatology/39.9.955.
    1. Vitaloni M., Botto-van Bemden A., Scotton D, et al. Global management of patients with knee osteoarthritis begins with quality of life assessment: a systematic review. BMC Musculoskeletal Disorders . 2019;20 doi: 10.1186/s12891-019-2895-3.493
    1. Swensson P., Miles T. S., Graven-Nielsen T. Modulation of stretch evoked reflexes in single motor units in the human masseter muscle by experimental pain. Experimental Brain Research . 2000;132(1):65–71.
    1. Lajoie Y., Gallagher S. P. Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Archives of Gerontology and Geriatrics . 2004;38(1):11–26. doi: 10.1016/s0167-4943(03)00082-7.
    1. Sofat N., Kuttapitiya A. Future directions for the management of pain in osteoarthritis. International Journal of Clinical Rheumatology . 2014;9(2):197–216. doi: 10.2217/ijr.14.10.
    1. Dobson F., Hinman R. S., Roos E. M., et al. OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarthritis and Cartilage . 2013;21(8):1042–1052. doi: 10.1016/j.joca.2013.05.002.
    1. Lana J. F. S. D., Rodrigues B. L. In Osteoarthritis Biomarkers and Treatments . Chennai, India: Intech Open; 2019. Osteoarthritis as a chronic inflammatory disease: a review of the inflammatory markers.
    1. Mora J. C., Przkora R., Cruz-Almeida Y. Knee osteoarthritis: pathophysiology and current treatment modalities. Journal of Pain Research . 2018;11:2189–2196. doi: 10.2147/jpr.s154002.
    1. Robinson W. H., Lepus C. M., Wang Q., et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nature Reviews Rheumatology . 2016;12(10):580–592. doi: 10.1038/nrrheum.2016.136.
    1. Sproston N. R., Ashworth J. J. Role of C-Reactive protein at sites of inflammation and infection. Frontiers in Immunology . 2018;9:p. 754. doi: 10.3389/fimmu.2018.00754.
    1. Stu¨rmer T., Brenner H., Koenig W. Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Annals of the Rheumatic Diseases . 2004;63:200–205.
    1. Sivakumar S., Shakeelahmed M. A., Senthilkumar S. A study of serum Hs CRP levels in osteoarthritis knee with clinical and radiological correlation. IOSR Journal of Dental and Medical Science . 2016;15(1):1–9. doi: 10.9790/0853-1509070109.
    1. Bihlet A. R., Byrjalsen I., Bay-Jensen A. C., et al. Associations between biomarkers of bone and cartilage turnover, gender, pain categories and radiographic severity in knee osteoarthritis. Arthritis Research & Therapy . 2019;21:p. 203. doi: 10.1186/s13075-019-1987-7.203
    1. Hao H. Q., Zhang J. F., He Q. Q., Wang Z. Cartilage oligomeric matrix protein, C-terminal cross-linking telopeptide of type II collagen, and matrix metalloproteinase-3 as biomarkers for knee and hip osteoarthritis (OA) diagnosis: a systematic review and meta-analysis. Osteoarthritis and Cartilage . 2019;27(5):726–736. doi: 10.1016/j.joca.2018.10.009.
    1. Hashempur M. H., Khademi F., Rahmanifard M., Zarshenas M. M. An evidence-based study on medicinal plants for hemorrhoids in medieval persia. Journal of Evidence-Based Complementary & Alternative Medicine . 2017;22(4):969–981. doi: 10.1177/2156587216688597.
    1. Mahdavi H., Hadadi Z., Ahmadi M. A review of the anti-oxidation, anti-inflammatory and anti-tumor properties of curcumin. Traditional and Integrative Medicine . 2017;2(4):188–195.
    1. Gutierrez-Orozco F., Failla M. Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients . 2013;5(8):3163–3183. doi: 10.3390/nu5083163.
    1. Tatiya-aphiradee N., Chatuphonprasert W., Jarukamjorn K. Ethanolic Garcinia mangostana extract and mangostin improve dextran sulfate sodium induced ulcerative colitis via the suppression of inflammatory and oxidative responses in ICR mice. Journal of Ethnopharmacology . 2021;265 doi: 10.1016/j.jep.2020.113384.113384
    1. Aizat W. M., Ahmad-Hashim F. H., Syed Jaafar S. N. Valorization of mangosteen, “The Queen of Fruits,” and new advances in postharvest and in food and engineering applications: a review. Journal of Advanced Research . 2019;20:61–70. doi: 10.1016/j.jare.2019.05.005.
    1. Xie Z., Sintara M., Chang T., Ou B. Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults. Food Sciences and Nutrition . 2015;3(1):32–38. doi: 10.1002/fsn3.187.

Source: PubMed

3
S'abonner