Radiomics: the facts and the challenges of image analysis

Stefania Rizzo, Francesca Botta, Sara Raimondi, Daniela Origgi, Cristiana Fanciullo, Alessio Giuseppe Morganti, Massimo Bellomi, Stefania Rizzo, Francesca Botta, Sara Raimondi, Daniela Origgi, Cristiana Fanciullo, Alessio Giuseppe Morganti, Massimo Bellomi

Abstract

Radiomics is an emerging translational field of research aiming to extract mineable high-dimensional data from clinical images. The radiomic process can be divided into distinct steps with definable inputs and outputs, such as image acquisition and reconstruction, image segmentation, features extraction and qualification, analysis, and model building. Each step needs careful evaluation for the construction of robust and reliable models to be transferred into clinical practice for the purposes of prognosis, non-invasive disease tracking, and evaluation of disease response to treatment. After the definition of texture parameters (shape features; first-, second-, and higher-order features), we briefly discuss the origin of the term radiomics and the methods for selecting the parameters useful for a radiomic approach, including cluster analysis, principal component analysis, random forest, neural network, linear/logistic regression, and other. Reproducibility and clinical value of parameters should be firstly tested with internal cross-validation and then validated on independent external cohorts. This article summarises the major issues regarding this multi-step process, focussing in particular on challenges of the extraction of radiomic features from data sets provided by computed tomography, positron emission tomography, and magnetic resonance imaging.

Keywords: Biomarkers; Clinical decision-making; Image processing (computer-assisted); Radiomics; Texture analysis.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Graphic representation of radiomic-feature clustering. This example graph displays the absolute value of the correlation coefficient (ranging from 0 to 1, on the right side, indicating increasing degree of correlation) between each pair of radiomic features (shown as numbers on the two axes). The heat map gives a good visual representation of the high correlation observed for most radiomic features that may be grouped in the same cluster to avoid redundancy. The yellow blocks along the diagonal graphically identify the clusters including highly correlated radiomic features. Blue blocks outside the diagonal visualise the low correlation observed between radiomic features belonging to different clusters. In the present example, two major clusters with different information may be identified, with very high redundancy for radiomic features in the first cluster (high homogeneity of the yellow blocks)
Fig. 2
Fig. 2
Axial computed tomography images showing differences in the same acquisition plane between a contrast-enhanced (a) and an unenhanced image (b), as well as for different radiation doses, lower in (c), and higher in (d)
Fig. 3
Fig. 3
Axial T2-weighted images of the pelvis, acquired keeping unchanged all the parameters, with only exception of the echo time, which was 34 ms in (a), 90 ms in (b), and 134 ms in (c), showing that even one single parameter can change the signal intensity of tissues and fluids, as clearly depicted by the signal of the bladder (white star), with higher and higher signal intensity from a to b to c
Fig. 4
Fig. 4
An example of manual segmentation of lung cancer on computed tomography images. Although manual segmentation is often considered ground truth, this image shows red and black regions of interest delineated by two different readers for the same tumour

References

    1. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–577. doi: 10.1148/radiol.2015151169.
    1. Lambin P, Leijenaar RTH, Deist T, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–762. doi: 10.1038/nrclinonc.2017.141.
    1. Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol. 2016;26:32–42. doi: 10.1007/s00330-015-3814-0.
    1. Larue Ruben T. H. M., van Timmeren Janna E., de Jong Evelyn E. C., Feliciani Giacomo, Leijenaar Ralph T. H., Schreurs Wendy M. J., Sosef Meindert N., Raat Frank H. P. J., van der Zande Frans H. R., Das Marco, van Elmpt Wouter, Lambin Philippe. Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncologica. 2017;56(11):1544–1553. doi: 10.1080/0284186X.2017.1351624.
    1. Ergen B, Baykara M (2014) Texture based feature extraction methods for content based medical image retrieval systems. Biomed Mater Eng 24:3055–3062.
    1. Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3:610–621. doi: 10.1109/TSMC.1973.4309314.
    1. Balagurunathan Y, Kumar V, Gu Y, et al. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27:805–823. doi: 10.1007/s10278-014-9716-x.
    1. Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process. 1975;4:172–179. doi: 10.1016/S0146-664X(75)80008-6.
    1. Ollers M, Bosmans G, van Baardwijk A, et al. The integration of PET–CT scans from different hospitals into radiotherapy treatment planning. Radiother Oncol. 2008;87:142–146. doi: 10.1016/j.radonc.2007.12.025.
    1. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10:257–273. doi: 10.1007/s12194-017-0406-5.
    1. Peeken JC, Bernhofer M, Wiestler B, et al. Radiomics in radiooncology—challenging the medical physicist. Phys Med. 2018;48:27–36. doi: 10.1016/j.ejmp.2018.03.012.
    1. Giger ML. Machine learning in medical imaging. J Am Coll Radiol. 2018;15:512–520. doi: 10.1016/j.jacr.2017.12.028.
    1. Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F. Radiomics-based prognosis analysis for non-small cell lung cancer. Sci Rep. 2017;7:46349. doi: 10.1038/srep46349.
    1. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087. doi: 10.1038/srep13087.
    1. Rizzo S, Botta F, Raimondi S et al (2018) Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months. Eur Radiol.
    1. Huynh E, Coroller TP, Narayan V, et al. Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS One. 2017;12:e0169172. doi: 10.1371/journal.pone.0169172.
    1. Wilkinson L, Friendly M. The history of the cluster heat map. Am Stat. 2009;63:179–184. doi: 10.1198/tas.2009.0033.
    1. Jolliffe IT. Principal component analysis, Series: Springer Series in Statistics. 2. New York: Springer; 2002. p. 487.
    1. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med. 1990;9:811–818. doi: 10.1002/sim.4780090710.
    1. Breiman L. Random forests. Mach Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324.
    1. Eschrich S, Yang I, Bloom G, et al. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol. 2005;23:3526–3535. doi: 10.1200/JCO.2005.00.695.
    1. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol. 58:267–288
    1. Shedden Kerby, Taylor Jeremy M G, Enkemann Steven A, Tsao Ming-Sound, Yeatman Timothy J, Gerald William L, Eschrich Steven, Jurisica Igor, Giordano Thomas J, Misek David E, Chang Andrew C, Zhu Chang Qi, Strumpf Daniel, Hanash Samir, Shepherd Frances A, Ding Keyue, Seymour Lesley, Naoki Katsuhiko, Pennell Nathan, Weir Barbara, Verhaak Roel, Ladd-Acosta Christine, Golub Todd, Gruidl Michael, Sharma Anupama, Szoke Janos, Zakowski Maureen, Rusch Valerie, Kris Mark, Viale Agnes, Motoi Noriko, Travis William, Conley Barbara, Seshan Venkatraman E, Meyerson Matthew, Kuick Rork, Dobbin Kevin K, Lively Tracy, Jacobson James W, Beer David G. Gene expression–based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nature Medicine. 2008;14(8):822–827. doi: 10.1038/nm.1790.
    1. Harrell FE, Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–387. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>;2-4.
    1. Lee H, Palm J, Grimes SM, Ji HP. The cancer genome atlas clinical explorer: a web and mobile interface for identifying clinical-genomic driver associations. Genome Med. 2015;7:112. doi: 10.1186/s13073-015-0226-3.
    1. Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045e57. doi: 10.1007/s10278-013-9622-7.
    1. Panth KM, Leijenaar RT, Carvalho S, et al. Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells. Radiother Oncol. 2015;116:462–466. doi: 10.1016/j.radonc.2015.06.013.
    1. McCollough C, Bakalyar DM, Bostani M, et al. Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220. AAPM Rep. 2014;2014:6–23.
    1. Dalal T, Kalra MK, Rizzo SM, et al. Metallic prosthesis: technique to avoid increase in CT radiation dose with automatic tube current modulation in a phantom and patients. Radiology. 2005;236:671–675. doi: 10.1148/radiol.2362041565.
    1. Rizzo SM, Kalra MK, Schmidt B, et al. CT images of abdomen and pelvis: effect of nonlinear three-dimensional optimized reconstruction algorithm on image quality and lesion characteristics. Radiology. 2005;237:309–315. doi: 10.1148/radiol.2371041879.
    1. Mackin Dennis, Fave Xenia, Zhang Lifei, Fried David, Yang Jinzhong, Taylor Brian, Rodriguez-Rivera Edgardo, Dodge Cristina, Jones Aaron Kyle, Court Laurence. Measuring Computed Tomography Scanner Variability of Radiomics Features. Investigative Radiology. 2015;50(11):757–765. doi: 10.1097/RLI.0000000000000180.
    1. Theodorakou C, Horrocks JA, Marshall NW, Speller RD. A novel method for producing x-ray test objects and phantoms. Phys Med Biol. 2004;49:1423–1438. doi: 10.1088/0031-9155/49/8/004.
    1. van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2016) Test-retest data for radiomic feature stability analysis: generalizable or study-specific? Tomography 2:361–365
    1. Solomon Justin, Mileto Achille, Nelson Rendon C., Roy Choudhury Kingshuk, Samei Ehsan. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi–Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm. Radiology. 2016;279(1):185–194. doi: 10.1148/radiol.2015150892.
    1. Reuzé Sylvain, Schernberg Antoine, Orlhac Fanny, Sun Roger, Chargari Cyrus, Dercle Laurent, Deutsch Eric, Buvat Irène, Robert Charlotte. Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges. International Journal of Radiation Oncology*Biology*Physics. 2018;102(4):1117–1142. doi: 10.1016/j.ijrobp.2018.05.022.
    1. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present…any future? Eur J Nucl Med Mol Imaging. 2017;44:151–165. doi: 10.1007/s00259-016-3427-0.
    1. Shiri I, Rahmin A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017;27:4498–4509. doi: 10.1007/s00330-017-4859-z.
    1. Altazi BA, Zhang GG, Fernandez DC, et al. Reproducibility of F18-FDG PET radiomic features for different cervical tumour segmentation methods, gray-level discretization, and reconstruction algorithm. J Appl Clin Med Phys. 2017;18:32–48. doi: 10.1002/acm2.12170.
    1. Reuzè S, Orlhac F, Chargari C, et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. 2017;8:43169–43179. doi: 10.18632/oncotarget.17856.
    1. Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging (Bellingham) 2015;2:041002. doi: 10.1117/1.JMI.2.4.041002.
    1. Forgacs A, Pall Jonsson H, Dahlbom M, et al. A study on the basic criteria for selecting heterogeneity parameters of F18-FDG PET images. PLoS One. 2016;11:e0164113. doi: 10.1371/journal.pone.0164113.
    1. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50:11S–20S. doi: 10.2967/jnumed.108.057182.
    1. Madabhushi A, Udupa JK. New methods of MR image intensity standardization via generalized scale. Med Phys. 2006;33:3426–3434. doi: 10.1118/1.2335487.
    1. Mayerhoefer M, Szomolanyi P, Jirak D, Materka A, Trattnig S. Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys. 2009;36:1236–1243. doi: 10.1118/1.3081408.
    1. Lerski RA, Schad LR, Luypaert R, et al. Multicentre magnetic resonance texture analysis trial using reticulated foam test objects. Magn Reson Imaging. 1999;17:1025–1031. doi: 10.1016/S0730-725X(99)00034-X.
    1. Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234–1248. doi: 10.1016/j.mri.2012.06.010.
    1. Hojjatoleslami S, Kittler J. Region growing: a new approach. IEEE Trans Image Process. 1998;7:1079–1084. doi: 10.1109/83.701170.
    1. Kalef-Ezra J, Karantanas A, Tsekeris P. CT measurement of lung density. Acta Radiol. 1999;40:333–337. doi: 10.3109/02841859909175564.
    1. Sofka M, Wetzl J, Birkbeck N, et al. Multi-stage learning for robust lung segmentation in challenging CT volumes. Med Image Comput Comput Assist Interv. 2011;14:667–674.
    1. Knollmann FD, Kumthekar R, Fetzer D, Socinski MA. Assessing response to treatment in non-small-cell lung cancer: role of tumor volume evaluated by computed tomography. Clin Lung Cancer. 2014;15:103–109. doi: 10.1016/j.cllc.2013.11.001.
    1. Gao Hui, Chae Oksam. Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern Recognition. 2010;43(7):2406–2417. doi: 10.1016/j.patcog.2010.01.010.
    1. Chen X, Udupa JK, Bagci U, Zhuge Y, Yao J (2012) Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21:2035–2046.
    1. Ye X, Beddoe G, Slabaugh G. Automatic graph cut segmentation of lesions in CT using mean shift superpixels. Int J Biomed Imaging. 2010;2010:983963. doi: 10.1155/2010/983963.
    1. Suzuki K, Kohlbrenner R, Epstein ML, Obajuluwa AM, Xu J, Hori M. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms. Med Phys. 2010;37:2159. doi: 10.1118/1.3395579.
    1. Lu K, Higgins WE. Interactive segmentation based on the live wire for 3D CT chest image analysis. Int J Comput Assist Radiol Surg. 2007;2:151–167. doi: 10.1007/s11548-007-0129-x.
    1. Tan Y, Schwartz LH, Zhao B. Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field. Med Phys. 2013;40:043502. doi: 10.1118/1.4793409.
    1. Sun S, Bauer C, Beichel R. Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. IEEE Trans Med Imaging. 2012;31:449–460. doi: 10.1109/TMI.2011.2171357.
    1. Velazquez ER, Parmar C, Jermoumi M, et al. Volumetric CT-based segmentation of NSCLC using 3D-slicer. Sci Rep. 2013;3:3529. doi: 10.1038/srep03529.

Source: PubMed

3
S'abonner