Characterization of a Campylobacter jejuni VirK protein homolog as a novel virulence determinant

Veronica Novik, Dirk Hofreuter, Jorge E Galán, Veronica Novik, Dirk Hofreuter, Jorge E Galán

Abstract

Campylobacter jejuni is a leading cause of food-borne illness in the United States. Despite significant recent advances, its mechanisms of pathogenesis are poorly understood. A unique feature of this pathogen is that, with some exceptions, it lacks homologs of known virulence factors from other pathogens. Through a genetic screen, we have identified a C. jejuni homolog of the VirK family of virulence factors, which is essential for antimicrobial peptide resistance and mouse virulence.

Figures

FIG. 1.
FIG. 1.
Amino acid sequence comparison of C. jejuni CJJ81176_1087 with VirK protein family members from pathogenic bacteria. The proteins and organisms used in the alignment are as follows (from top to bottom): hypothetical protein APL_0453 of Actinobacillus pleuropneumoniae strain L20, LapB of Haemophilus influenzae strain Rd KW20, LapB of Pasteurella multocida strain Pm70, hypothetical protein NMA1569 of Neisseria meningitidis strain Z2491, Cjj81176_1087 of Campylobacter jejuni strain 81-176, VirK from Shigella flexneri serotype 2a strain 301, VirK of S. Typhimurium strain LT2, VirK from Yersinia pestis strain CO92, and a putative VirK homolog from Vibrio parahaemolyticus strain RIMD 2210633. The amino acid sequences of VirK proteins from different pathogenic bacteria were aligned using the AlignX program of InforMax 2003 software, and the output was processed for display using BOXSHADE, version 3.21 (http://www.ch.embnet.org/software/BOX_form.html). Identical residues are indicated by a filled background and conserved residues by a shaded background.
FIG. 2.
FIG. 2.
Ability of a C. jejuni 81-176 virK mutant strain to enter and survive within cultured cells. (A) Cultured cells were infected with C. jejuni 81-176 (wild type [WT]), the isogenic virK mutant, or the complemented virK mutant at an MOI of 10 for 2 h, followed by a 3-h incubation in the presence of gentamicin. Comparison of levels of invasion is shown as the percentage of bacteria that survived treatment with gentamicin relative to that for the WT strain, which was set at 100%. Values are means ± standard deviations for three independent determinations. The difference between the value for the virK mutant and that for the WT or the complemented mutant was statistically significant (P < 0.001). (B) Cultured cells were infected with C. jejuni 81-176 or the isogenic virK mutant at an MOI of 10 for 2 h. Cells were then stained with a protocol that allows extracellular and intracellular bacteria to be distinguished, and the number of internalized bacteria per cell was determined as described in Materials and Methods. Values are means ± standard deviations for three independent determinations. The difference between the values for the two strains was not statistically significant.
FIG. 3.
FIG. 3.
Subcellular localization of C. jejuni VirK. C. jejuni strain CB32, which encodes FLAG epitope-tagged VirK, was subjected to subcellular fractionation as described in Materials and Methods. The membrane fraction was treated as indicated, and the level of the extracted VirK (s) relative to the proportion that remained membrane associated (p) was determined by Western blot analysis with an antibody against the FLAG tag epitope.
FIG. 4.
FIG. 4.
C. jejuni virK is attenuated after intraperitoneal infection in a mouse colonization model. (A and B) Equal numbers of wild-type C. jejuni 81-176 and its virK mutant derivative were administered intraperitoneally to myd88−/− mice. (A) The numbers of CFU of the wild type (filled diamonds) and the virK mutant (open circles) in the feces of the infected animals were determined at different times after infection, as indicated in Materials and Methods. (B) Colonization of tissues was evaluated by determining the CFU of the wild type (filled diamonds) and the virK mutant (open circles) in the intestine and liver. (C and D) To test the complementation of the virK mutant, myd88−/− mice were inoculated intraperitoneally with equal numbers of the C. jejuni 81-176 virK mutant strain and its complemented derivative [virK (+virK)]. The numbers of CFU of the virK mutant (open circles) and its complemented derivative (filled triangles) in the feces (C) or tissues (D) were determined as described in Materials and Methods. Except for the fecal shedding in week 1, in all cases the difference between the number of CFU of the wild type and the virK mutant was statistically significant (P < 0.05).
FIG. 5.
FIG. 5.
Colonization of mice by C. jejuni virK after oral infection. Equal numbers of the complemented mutant strain and the virK mutant derivative were administered to myd88−/− mice by stomach gavage. The numbers of CFU of the complemented mutant strain (filled triangles) and the virK mutant (open circles) in the feces (A) or tissues (B) of the infected animals were determined at different times after infection as described in Materials and Methods. In all cases, the differences between the complemented mutant strain and virK CFU did not reach statistical significance (P > 0.05).
FIG. 6.
FIG. 6.
C. jejuni virK exhibits increased susceptibility to antimicrobial peptides. Wild-type (WT) C. jejuni 81-176, the virK mutant, and the complemented mutant derivative [virK (+virK)] were treated with the indicated amounts of polymyxin B (PB) (as a surrogate for antimicrobial peptides) (A) or the antimicrobial peptide Magainin-1 (B), and the numbers of CFU that survived were determined as described in Materials and Methods. Values are standardized to those of the WT treated with PBS (taken as 100%) and represent means ± standard deviations for three independent determinations. Asterisks indicate values statistically significantly different (P < 0.001) from those for the WT or the complemented mutant.

References

    1. Aguero-Rosenfeld, M. E., X. H. Yang, and I. Nachamkin. 1990. Infection of adult Syrian hamsters with flagellar variants of Campylobacter jejuni. Infect. Immun. 58:2214-2219.
    1. Allos, B. M. 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clin. Infect. Dis. 32:1201-1206.
    1. Anderson, P., R. B. Johnston, Jr., and D. H. Smith. 1972. Human serum activities against Hemophilus influenzae, type b. J. Clin. Investig. 51:31-38.
    1. Aspinall, G. O., S. Fujimoto, A. G. McDonald, H. Pang, L. A. Kurjanczyk, and J. L. Penner. 1994. Lipopolysaccharides from Campylobacter jejuni associated with Guillain-Barré syndrome patients mimic human gangliosides in structure. Infect. Immun. 62:2122-2125.
    1. Bachtiar, B. M., P. J. Coloe, and B. N. Fry. 2007. Knockout mutagenesis of the kpsE gene of Campylobacter jejuni 81116 and its involvement in bacterium-host interactions. FEMS Immunol. Med. Microbiol. 49:149-154.
    1. Bacon, D. J., C. M. Szymanski, D. H. Burr, R. P. Silver, R. A. Alm, and P. Guerry. 2001. A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176. Mol. Microbiol. 40:769-777.
    1. Bader, M. W., W. W. Navarre, W. Shiau, H. Nikaido, J. G. Frye, M. McClelland, F. C. Fang, and S. I. Miller. 2003. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol. Microbiol. 50:219-230.
    1. Bernardini, M. L., J. Mounier, H. d'Hauteville, M. Coquis-Rondon, and P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl. Acad. Sci. USA 86:3867-3871.
    1. Black, R. E., M. M. Levine, M. L. Clements, T. P. Hughes, and M. J. Blaser. 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157:472-479.
    1. Blaser, M. J., D. S. Boose, W. Wang, and F. M. LaForce. 1979. Serum bactericidal activity toward Campylobacter fetus ss. jejuni and ss. intestinalis. Clin. Res. 27:137-142.
    1. Blaser, M. J., P. F. Smith, and P. F. Kohler. 1985. Susceptibility of Campylobacter isolates to the bactericidal activity of human serum. J. Infect. Dis. 151:227-235.
    1. Brodsky, I. E., R. K. Ernst, S. I. Miller, and S. Falkow. 2002. mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. J. Bacteriol. 184:3203-3213.
    1. Brodsky, I. E., N. Ghori, S. Falkow, and D. Monack. 2005. Mig-14 is an inner membrane-associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection. Mol. Microbiol. 55:954-972.
    1. Brown, K. L., and R. E. Hancock. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18:24-30.
    1. Caldwell, M. B., P. Guerry, E. C. Lee, J. P. Burans, and R. I. Walker. 1985. Reversible expression of flagella in Campylobacter jejuni. Infect. Immun. 50:941-943.
    1. Candon, H. L., B. J. Allan, C. D. Fraley, and E. C. Gaynor. 2007. Polyphosphate kinase 1 is a pathogenesis determinant in Campylobacter jejuni. J. Bacteriol. 189:8099-8108.
    1. Collazo, C. M., and J. E. Galan. 1996. Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium. Infect. Immun. 64:3524-3531.
    1. Davis, S. D., and R. J. Wedgwood. 1965. Kinetics of the bactericidal action of normal serum on gram-negative bacteria. J. Immunol. 95:75-79.
    1. DeLeo, F. R., and M. W. Otto (ed.). 2008. Methods in molecular biology, vol. 431. Bacterial pathogenesis: methods and protocols. Humana Press, Totowa, NJ.
    1. Detweiler, C. S., D. M. Monack, I. E. Brodsky, H. Mathew, and S. Falkow. 2003. virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol. Microbiol. 48:385-400.
    1. Fauchere, J. L., A. Rosenau, M. Veron, E. N. Moyen, S. Richard, and A. Pfister. 1986. Association with HeLa cells of Campylobacter jejuni and Campylobacter coli isolated from human feces. Infect. Immun. 54:283-287.
    1. Fouts, D. E., E. F. Mongodin, R. E. Mandrell, W. G. Miller, D. A. Rasko, J. Ravel, L. M. Brinkac, R. T. DeBoy, C. T. Parker, S. C. Daugherty, R. J. Dodson, A. S. Durkin, R. Madupu, S. A. Sullivan, J. U. Shetty, M. A. Ayodeji, A. Shvartsbeyn, M. C. Schatz, J. H. Badger, C. M. Fraser, and K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3:e15.
    1. Fu, Y., and J. E. Galan. 1998. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol. Microbiol. 27:359-368.
    1. Groisman, E. A., J. Kayser, and F. C. Soncini. 1997. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J. Bacteriol. 179:7040-7045.
    1. Guccione, E., M. del Rocio Leon-Kempis, B. M. Pearson, E. Hitchin, F. Mulholland, P. M. van Diemen, M. P. Stevens, and D. J. Kelly. 2008. Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol. Microbiol. 69:77-93.
    1. Guerrant, R. L., R. G. Lahita, W. C. Winn, Jr., and R. B. Roberts. 1978. Campylobacteriosis in man: pathogenic mechanisms and review of 91 bloodstream infections. Am. J. Med. 65:584-592.
    1. Guerry, P., R. Yao, R. A. Alm, D. H. Burr, and T. J. Trust. 1994. Systems of experimental genetics for Campylobacter species. Methods Enzymol. 235:474-481.
    1. Hancock, R. E. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1:156-164.
    1. Hattori, Y., K. Iwata, K. Suzuki, M. Uraji, N. Ohta, A. Katoh, and K. Yoshida. 2001. Sequence characterization of the vir region of a nopaline type Ti plasmid, pTi-SAKURA. Genes Genet. Syst. 76:121-130.
    1. Hendrixson, D. R., and V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52:471-484.
    1. Hofreuter, D., V. Novik, and J. E. Galan. 2008. Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 4:425-433.
    1. Hofreuter, D., J. Tsai, R. O. Watson, V. Novik, B. Altman, M. Benitez, C. Clark, C. Perbost, T. Jarvie, L. Du, and J. E. Galan. 2006. Unique features of a highly pathogenic Campylobacter jejuni strain. Infect. Immun. 74:4694-4707.
    1. Jeon, B., W. Muraoka, A. Scupham, and Q. Zhang. 2009. Roles of lipooligosaccharide and capsular polysaccharide in antimicrobial resistance and natural transformation of Campylobacter jejuni. J. Antimicrob. Chemother. 63:462-468.
    1. Jin, S., A. Joe, J. Lynett, E. K. Hani, P. Sherman, and V. L. Chan. 2001. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol. 39:1225-1236.
    1. Johnson, R. J., C. Nolan, S. P. Wang, W. R. Shelton, and M. J. Blaser. 1984. Persistent Campylobacter jejuni infection in an immunocompromised patient. Ann. Intern. Med. 100:832-834.
    1. Johnson, W. M., and H. Lior. 1988. A new heat-labile cytolethal distending toxin (CLDT) produced by Campylobacter spp. Microb. Pathog. 4:115-126.
    1. Joiner, K. A. 1988. Complement evasion by bacteria and parasites. Annu. Rev. Microbiol. 42:201-230.
    1. Karlyshev, A. V., P. Everest, D. Linton, S. Cawthraw, D. G. Newell, and B. W. Wren. 2004. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150:1957-1964.
    1. Klumpp, J., and T. M. Fuchs. 2007. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 153:1207-1220.
    1. Konkel, M. E., S. G. Garvis, S. L. Tipton, D. E. Anderson, Jr., and W. Cieplak, Jr. 1997. Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol. Microbiol. 24:953-963.
    1. Konkel, M. E., and L. A. Joens. 1989. Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect. Immun. 57:2984-2990.
    1. Korlath, J. A., M. T. Osterholm, L. A. Judy, J. C. Forfang, and R. A. Robinson. 1985. A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J. Infect. Dis. 152:592-596.
    1. Kubori, T., and J. E. Galan. 2002. Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J. Bacteriol. 184:4699-4708.
    1. Lara-Tejero, M., and J. E. Galan. 2000. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290:354-357.
    1. Lara-Tejero, M., and J. E. Galan. 2002. Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol. 10:147-152.
    1. Lastovica, A. J., and J. L. Penner. 1983. Serotypes of Campylobacter jejuni and Campylobacter coli in bacteremic, hospitalized children. J. Infect. Dis. 147:592.
    1. Lawley, T. D., K. Chan, L. J. Thompson, C. C. Kim, G. R. Govoni, and D. M. Monack. 2006. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog. 2:e11.
    1. Lett, M. C., C. Sasakawa, N. Okada, T. Sakai, S. Makino, M. Yamada, K. Komatsu, and M. Yoshikawa. 1989. virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the VirG protein and determination of the complete coding sequence. J. Bacteriol. 171:353-359.
    1. Lin, J., L. O. Michel, and Q. Zhang. 2002. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob. Agents Chemother. 46:2124-2131.
    1. Makinoshima, H., and M. S. Glickman. 2005. Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature 436:406-409.
    1. Makinoshima, H., and M. S. Glickman. 2006. Site-2 proteases in prokaryotes: regulated intramembrane proteolysis expands to microbial pathogenesis. Microbes Infect. 8:1882-1888.
    1. Matson, J. S., and V. J. DiRita. 2005. Degradation of the membrane-localized virulence activator TcpP by the YaeL protease in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 102:16403-16408.
    1. May, B. J., Q. Zhang, L. L. Li, M. L. Paustian, T. S. Whittam, and V. Kapur. 2001. Complete genomic sequence of Pasteurella multocida, Pm70. Proc. Natl. Acad. Sci. USA 98:3460-3465.
    1. Morooka, T., A. Umeda, and K. Amako. 1985. Motility as an intestinal colonization factor for Campylobacter jejuni. J. Gen. Microbiol. 131:1973-1980.
    1. Nachamkin, I. 2002. Chronic effects of Campylobacter infection. Microbes Infect. 4:399-403.
    1. Nakata, N., C. Sasakawa, N. Okada, T. Tobe, I. Fukuda, T. Suzuki, K. Komatsu, and M. Yoshikawa. 1992. Identification and characterization of virK, a virulence-associated large plasmid gene essential for intercellular spreading of Shigella flexneri. Mol. Microbiol. 6:2387-2395.
    1. Newell, D. G., H. McBride, F. Saunders, Y. Dehele, and A. D. Pearson. 1985. The virulence of clinical and environmental isolates of Campylobacter jejuni. J. Hyg. (London) 94:45-54.
    1. Newell, D. G., and A. Pearson. 1984. The invasion of epithelial cell lines and the intestinal epithelium of infant mice by Campylobacter jejuni/coli. J. Diarrhoeal Dis. Res. 2:19-26.
    1. Oelschlaeger, T. A., P. Guerry, and D. J. Kopecko. 1993. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc. Natl. Acad. Sci. USA 90:6884-6888.
    1. Pajaniappan, M., J. E. Hall, S. A. Cawthraw, D. G. Newell, E. C. Gaynor, J. A. Fields, K. M. Rathbun, W. A. Agee, C. M. Burns, S. J. Hall, D. J. Kelly, and S. A. Thompson. 2008. A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chicken colonization. Mol. Microbiol. 68:474-491.
    1. Pandey, A., J. S. Andersen, and M. Mann. 2000. Use of mass spectrometry to study signaling pathways. Sci. STKE 2000:PL1.
    1. Parkhill, J., B. W. Wren, K. Mungall, J. M. Ketley, C. Churcher, D. Basham, T. Chillingworth, R. M. Davies, T. Feltwell, S. Holroyd, K. Jagels, A. V. Karlyshev, S. Moule, M. J. Pallen, C. W. Penn, M. A. Quail, M. A. Rajandream, K. M. Rutherford, A. H. van Vliet, S. Whitehead, and B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665-668.
    1. Pearson, B. M., D. J. Gaskin, R. P. Segers, J. M. Wells, P. J. Nuijten, and A. H. van Vliet. 2007. The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J. Bacteriol. 189:8402-8403.
    1. Pei, Z., and M. J. Blaser. 1993. PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J. Biol. Chem. 268:18717-18725.
    1. Poly, F., T. Read, D. R. Tribble, S. Baqar, M. Lorenzo, and P. Guerry. 2007. Genome sequence of a clinical isolate of Campylobacter jejuni from Thailand. Infect. Immun. 75:3425-3433.
    1. Roantree, R. J., and N. C. Pappas. 1960. The survival of strains of enteric bacilli in the blood stream as related to their sensitivity to the bactericidal effect of serum. J. Clin. Investig. 39:82-88.
    1. Ruiz-Palacios, G. M. 2007. The health burden of Campylobacter infection and the impact of antimicrobial resistance: playing chicken. Clin. Infect. Dis. 44:701-703.
    1. Russell, R. G., M. O'Donnoghue, D. C. Blake, Jr., J. Zulty, and L. J. DeTolla. 1993. Early colonic damage and invasion of Campylobacter jejuni in experimentally challenged infant Macaca mulatta. J. Infect. Dis. 168:210-215.
    1. Sambrook, J., and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    1. Schägger, H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1:16-22.
    1. Schoolnik, G. K., T. M. Buchanan, and K. K. Holmes. 1976. Gonococci causing disseminated gonococcal infection are resistant to the bactericidal action of normal human sera. J. Clin. Investig. 58:1163-1173.
    1. Shi, Y., M. J. Cromie, F. F. Hsu, J. Turk, and E. A. Groisman. 2004. PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol. Microbiol. 53:229-241.
    1. Storm, D. R., K. S. Rosenthal, and P. E. Swanson. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46:723-763.
    1. Szymanski, C. M., D. H. Burr, and P. Guerry. 2002. Campylobacter protein glycosylation affects host cell interactions. Infect. Immun. 70:2242-2244.
    1. van Spreeuwel, J. P., G. C. Duursma, C. J. Meijer, R. Bax, P. C. Rosekrans, and J. Lindeman. 1985. Campylobacter colitis: histological immunohistochemical and ultrastructural findings. Gut 26:945-951.
    1. Velayudhan, J., M. A. Jones, P. A. Barrow, and D. J. Kelly. 2004. l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect. Immun. 72:260-268.
    1. Wagner, S., L. Baars, A. J. Ytterberg, A. Klussmeier, C. S. Wagner, O. Nord, P. A. Nygren, K. J. van Wijk, and J. W. de Gier. 2007. Consequences of membrane protein overexpression in Escherichia coli. Mol. Cell. Proteomics 6:1527-1550.
    1. Wang, Y., and D. E. Taylor. 1990. Natural transformation in Campylobacter species. J. Bacteriol. 172:949-955.
    1. Watson, R. O., and J. E. Galan. 2005. Signal transduction in Campylobacter jejuni-induced cytokine production. Cell. Microbiol. 7:655-665.
    1. Watson, R. O., V. Novik, D. Hofreuter, M. Lara-Tejero, and J. E. Galan. 2007. A MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect. Immun. 75:1994-2003.
    1. Wing, H. J., S. R. Goldman, S. Ally, and M. B. Goldberg. 2005. Modulation of an outer membrane protease contributes to the virulence defect of Shigella flexneri strains carrying a mutation in the virK locus. Infect. Immun. 73:1217-1220.

Source: PubMed

3
S'abonner