Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation

Vinicius Cruzat, Marcelo Macedo Rogero, Kevin Noel Keane, Rui Curi, Philip Newsholme, Vinicius Cruzat, Marcelo Macedo Rogero, Kevin Noel Keane, Rui Curi, Philip Newsholme

Abstract

Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.

Keywords: amino acids; gut; leukocytes; liver; nutrition; skeletal muscle.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Glutamine synthesis and hydrolysis. Glutamine is mainly synthesized by the enzyme glutamine synthetase (GS) and hydrolysed by the enzyme, glutaminase (GLS). GS catalyses glutamine biosynthesis using glutamate and ammonia (NH3) as a source. In this reaction, one ATP is consumed. Glutamate can be donated by many amino acids obtained exogenously (i.e., diet) and/or from endogenous amino acids’ catabolism. On the other hand, GLS is responsible for glutamine hydrolysis to glutamate and ammonium ion (NH4). Almost all cells in the body express GS and GLS, and their predominant expression and activity will dictate if the tissue is more likely to produce or consume glutamine in health and disease.
Figure 2
Figure 2
Intertissue glutamine production and utilisation in health and catabolic/hypercatabolic situations. Filled arrows indicate tissues that exhibit GS activity and thus produce glutamine; white arrows indicate tissues that exhibit GLS activity, and thus consume glutamine. In health and/or fed states, glutamine stores are in equilibrium in plasma/bloodstream and tissues, and are maintained constantly mainly by the liver and skeletal muscles, two major stores of glutamine in the body. On the other hand, cells of the immune system are extremely dependent on glucose and glutamine in situation (A), and even more in situation (B). Although the gut is a major site of glutamine consumption, in situation (B), there is a dramatic increase in glutamine consumption from both the luminal and basolateral membrane, when compared to situation (A). In addition, the liver switches the role of a major producer to a major glutamine consumer to maintain gluconeogenesis, and the whole body relies on the skeletal muscle’s ability/stores to maintain glutamine levels. However, this process is usually accompanied by a dramatic increase in muscle proteolysis, atrophy, and cachexia. The lungs and adipose tissue exhibit both GS and GLS enzymes, and hence can produce and consume glutamine in situations (A) and (B). The brain and the kidneys do not exhibit GS, only GLS, and hence are mainly dependent on plasma glutamine availability in situations (A) and (B).
Figure 3
Figure 3
Glutamine inter-tissue metabolic flux starting in skeletal muscle, liver, and gut continues in the immune cells. Abbreviations: Glutamine, GLN; glutamate, GLU; aspartate, ASP; arginine, ARG; leucine, LEU; alanine, ALA; glucose, Gluc; pyruvate, Pyr; pyruvate dehydrogenase; PDC; pyruvate carboxylase, PC; malate dehydrogenase, MD; glyceraldehyde-3-Phosphate, G3-P; lactate, Lac; triacylglycerol, TG; ribose 5-phosphate, R5P; alanine aminotransferase, ALT; glutamate dehydrogenase, GDH; glutamine synthetase, GS; glutaminase, GLS; inducible nitric oxide synthase, iNOS; intracellular heat shock protein, iHSP; heat Shock Factor 1, HSF-1; heat shock elements, HSEs; sirtuin 1, SIRT1; hexosamine biosynthetic pathway, HBP; ammonia, NH3; glutathione, GSH; oxidized GSH, GSSG; glutathione S-reductase, GSR; protein kinase B, Akt; AMP-activated protein kinase, AMPK; mTOR complex 1 and 2, mTORC1/2, extracellular signal-regulated kinases, ERK; c-Jun N-terminal kinases, JNK; gamma-Aminobutyric acid, GABA.
Figure 4
Figure 4
Mechanisms of enteral and parenteral glutamine (GLN) supply. Glutamine is an important substrate for rapidly dividing cells, such as enterocytes. This is a major site of glutamine consumption obtained from both exogenous/diet (luminal membrane) and/or endogenous glutamine synthesis (basolateral membrane). Free glutamine supplementation is mainly metabolized in the gut and poorly contribute to glutaminemia and tissue stores. On the other hand, glutamine dipeptides (e.g., Ala-Gln, Gly-Gln, Arg-Gln) escape from the gut metabolization and quickly supply glutamine to the plasma and target tissues. This effect is mainly attributed to the oligopeptide transporter 1 (Pept-1) located in the luminal membrane of the enterocytes.

References

    1. Grohmann U., Mondanelli G., Belladonna M.L., Orabona C., Pallotta M.T., Iacono A., Puccetti P., Volpi C. Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev. 2017;35:37–45. doi: 10.1016/j.cytogfr.2017.05.004.
    1. Curi R., Lagranha C.J., Doi S.Q., Sellitti D.F., Procopio J., Pithon-Curi T.C., Corless M., Newsholme P. Molecular mechanisms of glutamine action. J. Cell. Physiol. 2005;204:392–401. doi: 10.1002/jcp.20339.
    1. Curi R., Newsholme P., Marzuca-Nassr G.N., Takahashi H.K., Hirabara S.M., Cruzat V., Krause M., de Bittencourt P.I.H., Jr. Regulatory principles in metabolism-then and now. Biochem. J. 2016;473:1845–1857. doi: 10.1042/BCJ20160103.
    1. Cruzat V.F., Pantaleao L.C., Donato J., Jr., de Bittencourt P.I.H., Jr., Tirapegui J. Oral supplementations with free and dipeptide forms of l-glutamine in endotoxemic mice: Effects on muscle glutamine-glutathione axis and heat shock proteins. J. Nutr. Biochem. 2014;25:345–352. doi: 10.1016/j.jnutbio.2013.11.009.
    1. Newsholme P. Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J. Nutr. 2001;131:2514S–2523S. doi: 10.1093/jn/131.9.2515S.
    1. Cruzat V.F., Krause M., Newsholme P. Amino acid supplementation and impact on immune function in the context of exercise. J. Int. Soc. Sports Nutr. 2014;11:61. doi: 10.1186/s12970-014-0061-8.
    1. Ardawi M.S.M., Newsholme E.A. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat. Biochem. J. 1982;208:743–748. doi: 10.1042/bj2080743.
    1. Flaring U.B., Rooyackers O.E., Wernerman J., Hammarqvist F. Glutamine attenuates post-traumatic glutathione depletion in human muscle. Clin. Sci. 2003;104:275–282. doi: 10.1042/cs1040275.
    1. Roth E. Nonnutritive effects of glutamine. J. Nutr. 2008;138:2025S–2031S. doi: 10.1093/jn/138.10.2025S.
    1. Rodas P.C., Rooyackers O., Hebert C., Norberg A., Wernerman J. Glutamine and glutathione at icu admission in relation to outcome. Clin. Sci. 2012;122:591–597. doi: 10.1042/CS20110520.
    1. Newsholme E.A., Parry-Billings M. Properties of glutamine release from muscle and its importance for the immune system. J. Parenter. Enter. Nutr. 1990;14:63S–67S. doi: 10.1177/014860719001400406.
    1. Wernerman J. Clinical use of glutamine supplementation. J. Nutr. 2008;138:2040S–2044S. doi: 10.1093/jn/138.10.2040S.
    1. Berg A., Norberg A., Martling C.R., Gamrin L., Rooyackers O., Wernerman J. Glutamine kinetics during intravenous glutamine supplementation in icu patients on continuous renal replacement therapy. Intensive Care Med. 2007;33:660–666. doi: 10.1007/s00134-007-0547-9.
    1. Labow B.I., Souba W.W., Abcouwer S.F. Mechanisms governing the expression of the enzymes of glutamine metabolism—Glutaminase and glutamine synthetase. J. Nutr. 2001;131:2467S–2486S. doi: 10.1093/jn/131.9.2467S.
    1. Cruzat V.F., Newsholme P. Glutamine. CRC Press; Boca Raton, FL, USA: 2017. An introduction to glutamine metabolism; pp. 1–18.
    1. Cooney G., Curi R., Mitchelson A., Newsholme P., Simpson M., Newsholme E.A. Activities of some key enzymes of carbohydrate, ketone-body, adenosine and glutamine-metabolism in liver, and brown and white adipose tissues of the rat. Biochem. Biophys. Res. Commun. 1986;138:687–692. doi: 10.1016/S0006-291X(86)80551-4.
    1. Tan H.W.S., Sim A.Y.L., Long Y.C. Glutamine metabolism regulates autophagy-dependent mtorc1 reactivation during amino acid starvation. Nat. Commun. 2017;8:338. doi: 10.1038/s41467-017-00369-y.
    1. Ardawi M.S. Glutamine metabolism in the lungs of glucocorticoid-treated rats. Clin. Sci. 1991;81:37–42. doi: 10.1042/cs0810603.
    1. Parry-Billings M., Dimitriadis G.D., Leighton B., Bond J., Bevan S.J., Opara E., Newsholme E.A. Effects of hyperthyroidism and hypothyroidism on glutamine metabolism by skeletal muscle of the rat. Biochem. J. 1990;272:319–322. doi: 10.1042/bj2720319.
    1. Parry-Billings M., Dimitriadis G., Leighton B., Dunger D., Newsholme E. The effects of growth hormone administration in vivo on skeletal muscle glutamine metabolism of the rat. Horm. Metab. Res. 1993;25:292–293. doi: 10.1055/s-2007-1002101.
    1. Cruzat V.F., Keane K.N., Scheinpflug A.L., Cordeiro R., Soares M.J., Newsholme P. Alanyl-glutamine improves pancreatic beta-cell function following ex vivo inflammatory challenge. J. Endocrinol. 2015;224:261–271. doi: 10.1530/JOE-14-0677.
    1. Krebs H.A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem. J. 1935;29:1951–1969. doi: 10.1042/bj0291951.
    1. Neu J., Shenoy V., Chakrabarti R. Glutamine nutrition and metabolism: Where do we go from here? FASEB J. 1996;10:829–837. doi: 10.1096/fasebj.10.8.8666159.
    1. Holecek M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018;15:33. doi: 10.1186/s12986-018-0271-1.
    1. Altman B.J., Stine Z.E., Dang C.V. From krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer. 2016;16:619–634. doi: 10.1038/nrc.2016.71.
    1. Kao C., Hsu J., Bandi V., Jahoor F. Alterations in glutamine metabolism and its conversion to citrulline in sepsis. Am. J. Physiol. Endocrinol. Metab. 2013;304:E1359–E1364. doi: 10.1152/ajpendo.00628.2012.
    1. Rogero M.M., Borges M.C., Pires I.S.D., Borelli P., Tirapegui J. Ffect of glutamine supplementation and in vivo infection with mycobacterium bovis (bacillus calmette-guerin) in the function of peritoneal macrophages in early weaned mice. Ann. Nutr. Metab. 2007;51:173–174.
    1. Karinch A.M., Pan M., Lin C.M., Strange R., Souba W.W. Glutamine metabolism in sepsis and infection. J. Nutr. 2001;131:2531S–2550S. doi: 10.1093/jn/131.9.2535S.
    1. Leite J.S., Raizel R., Hypolito T.M., Rosa T.D., Cruzat V.F., Tirapegui J. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle hsp-27 in rats trained using a progressive high-intensity resistance exercise. Appl. Physiol. Nutr. Metab. 2016;41:842–849. doi: 10.1139/apnm-2016-0049.
    1. Cruzat V.F., Rogero M.M., Tirapegui J. Effects of supplementation with free glutamine and the dipeptide alanyl-glutamine on parameters of muscle damage and inflammation in rats submitted to prolonged exercise. Cell Biochem. Funct. 2010;28:24–30. doi: 10.1002/cbf.1611.
    1. Curi R., Lagranha C.J., Doi S.Q., Sellitti D.F., Procopio J., Pithon-Curi T.C. Glutamine-dependent changes in gene expression and protein activity. Cell Biochem. Funct. 2005;23:77–84. doi: 10.1002/cbf.1165.
    1. Djoko K.Y., Phan M.D., Peters K.M., Walker M.J., Schembri M.A., McEwan A.G. Interplay between tolerance mechanisms to copper and acid stress in Escherichia coli. Proc. Nat. Acad. Sci. USA. 2017;114:6818–6823. doi: 10.1073/pnas.1620232114.
    1. Wernerman J. Feeding the gut: How, when and with what—The metabolic issue. Curr. Opin. Crit. Care. 2014;20:196–201. doi: 10.1097/MCC.0000000000000066.
    1. Beutheu S., Ouelaa W., Guerin C., Belmonte L., Aziz M., Tennoune N., Bole-Feysot C., Galas L., Dechelotte P., Coeffier M. Glutamine supplementation, but not combined glutamine and arginine supplementation, improves gut barrier function during chemotherapy-induced intestinal mucositis in rats. Clin. Nutr. 2014;33:694–701. doi: 10.1016/j.clnu.2013.09.003.
    1. Souba W.W., Smith R.J., Wilmore D.W. Glutamine metabolism by the intestinal tract. J. Parenter. Enter. Nutr. 1985;9:608–617. doi: 10.1177/0148607185009005608.
    1. Holecek M. Side effects of long-term glutamine supplementation. J. Parenter. Enter. Nutr. 2013;37:607–616. doi: 10.1177/0148607112460682.
    1. Kim M.H., Kim H. The roles of glutamine in the intestine and its implication in intestinal diseases. Int. J. Mol. Sci. 2017;18:1051. doi: 10.3390/ijms18051051.
    1. Souba W.W., Herskowitz K., Salloum R.M., Chen M.K., Austgen T.R. Gut glutamine metabolism. J. Parenter. Enter. Nutr. 1990;14:45S–50S. doi: 10.1177/014860719001400403.
    1. Cruzat V.F., Bittencourt A., Scomazzon S.P., Leite J.S., de Bittencourt P.I.H., Tirapegui J. Oral free and dipeptide forms of glutamine supplementation attenuate oxidative stress and inflammation induced by endotoxemia. Nutrition. 2014;30:602–611. doi: 10.1016/j.nut.2013.10.019.
    1. Aosasa S., Wells-Byrum D., Alexander J.W., Ogle C.K. Influence of glutamine-supplemented caco-2 cells on cytokine production of mononuclear cells. J. Parenter. Enter. Nutr. 2003;27:333–339. doi: 10.1177/0148607103027005333.
    1. Coeffier M., Claeyssens S., Hecketsweiler B., Lavoinne A., Ducrotte P., Dechelotte P. Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;285:G266–G273. doi: 10.1152/ajpgi.00385.2002.
    1. Jobin C., Hellerbrand C., Licato L.L., Brenner D.A., Sartor R.B. Mediation by nf-kappa b of cytokine induced expression of intercellular adhesion molecule 1 (icam-1) in an intestinal epithelial cell line, a process blocked by proteasome inhibitors. Gut. 1998;42:779–787. doi: 10.1136/gut.42.6.779.
    1. Coeffier M., Miralles-Barrachina O., Le Pessot F., Lalaude O., Daveau M., Lavoinne A., Lerebours E., Dechelotte P. Influence of glutamine on cytokine production by human gut in vitro. Cytokine. 2001;13:148–154. doi: 10.1006/cyto.2000.0813.
    1. Tirapegui J., Cruzat V. Glutamine and skeletal muscle. In: Rajendram R., Preedy V.R., Patel V.B., editors. Glutamine in Clinical Nutrition. Springer; New York, NY, USA: 2015. pp. 499–511.
    1. Cruzat V.F., Tirapegui J. Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise. Nutrition. 2009;25:428–435. doi: 10.1016/j.nut.2008.09.014.
    1. Walsh N.P., Blannin A.K., Robson P.J., Gleeson M. Glutamine, exercise and immune function. Links and possible mechanisms. Sports Med. 1998;26:177–191. doi: 10.2165/00007256-199826030-00004.
    1. Rowbottom D.G., Keast D., Morton A.R. The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med. 1996;21:80–97. doi: 10.2165/00007256-199621020-00002.
    1. Curi R., Newsholme P., Procopio J., Lagranha C., Gorjao R., Pithon-Curi T.C. Glutamine, gene expression, and cell function. Front. Biosci. 2007;12:344–357. doi: 10.2741/2068.
    1. Rogero M.M., Tirapegui J., Pedrosa R.G., de Castro I.A., Pires I.S.D. Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise. Nutrition. 2006;22:564–571. doi: 10.1016/j.nut.2005.11.002.
    1. Rogero M.M., Tirapegui J., Pedrosa R.G., Pires I.S.D., de Castro I.A. Plasma and tissue glutamine response to acute and chronic supplementation with l-glutamine and l-alanyl-l-glutamine in rats. Nutr. Res. 2004;24:261–270. doi: 10.1016/j.nutres.2003.11.002.
    1. Wagenmakers A.J. Muscle amino acid metabolism at rest and during exercise: Role in human physiology and metabolism. Exerc. Sport Sci. Rev. 1998;26:287–314. doi: 10.1249/00003677-199800260-00013.
    1. Goldberg A.L., Chang T.W. Regulation and significance of amino acid metabolism in skeletal muscle. Fed. Proc. 1978;37:2301–2307.
    1. Petry E.R., Cruzat V.F., Heck T.G., Leite J.S., Homem de Bittencourt P.I.H., Tirapegui J. Alanyl-glutamine and glutamine plus alanine supplements improve skeletal redox status in trained rats: Involvement of heat shock protein pathways. Life Sci. 2014;94:130–136. doi: 10.1016/j.lfs.2013.11.009.
    1. Nieman D.C., Pedersen B.K. Exercise and immune function. Recent developments. Sports Med. 1999;27:73–80. doi: 10.2165/00007256-199927020-00001.
    1. Anderson P.M., Broderius M.A., Fong K.C., Tsui K.N., Chew S.F., Ip Y.K. Glutamine synthetase expression in liver, muscle, stomach and intestine of bostrichthys sinensis in response to exposure to a high exogenous ammonia concentration. J. Exp. Biol. 2002;205:2053–2065.
    1. Austgen T.R., Chakrabarti R., Chen M.K., Souba W.W. Adaptive regulation in skeletal muscle glutamine metabolism in endotoxin-treated rats. J. Trauma. 1992;32:600–607. doi: 10.1097/00005373-199205000-00011.
    1. Labow B.I., Souba W.W., Abcouwer S.F. Glutamine synthetase expression in muscle is regulated by transcriptional and posttranscriptional mechanisms. Am. J. Physiol. 1999;276:E1136–E1145. doi: 10.1152/ajpendo.1999.276.6.E1136.
    1. Xia Y., Wen H.Y., Young M.E., Guthrie P.H., Taegtmeyer H., Kellems R.E. Mammalian target of rapamycin and protein kinase a signaling mediate the cardiac transcriptional response to glutamine. J. Biolog. Chem. 2003;278:13143–13150. doi: 10.1074/jbc.M208500200.
    1. Galley H.F. Oxidative stress and mitochondrial dysfunction in sepsis. Br. J. Anaesth. 2011;107:57–64. doi: 10.1093/bja/aer093.
    1. Bode B.P. Recent molecular advances in mammalian glutamine transport. J. Nutr. 2001;131:2475S–2486S. doi: 10.1093/jn/131.9.2475S.
    1. Haussinger D., Schliess F. Glutamine metabolism and signaling in the liver. Front. Biosci. 2007;12:371–391. doi: 10.2741/2070.
    1. McGivan J.D., Bradford N.M. Characteristics of the activation of glutaminase by ammonia in sonicated rat liver mitochondria. Biochim. Biophys. Acta. 1983;759:296–302. doi: 10.1016/0304-4165(83)90327-6.
    1. Hoek J.B., Charles R., De Haan E.J., Tager J.M. Glutamate oxidation in rat-liver homogenate. Biochim. Biophys. Acta. 1969;172:407–416. doi: 10.1016/0005-2728(69)90137-6.
    1. Halestrap A.P. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim. Biophys. Acta. 1989;973:355–382. doi: 10.1016/S0005-2728(89)80378-0.
    1. Brosnan J.T., Brosnan M.E. Hepatic glutaminase—A special role in urea synthesis? Nutrition. 2002;18:455–457. doi: 10.1016/S0899-9007(02)00776-1.
    1. Meijer A.J., Verhoeven A.J. Regulation of hepatic glutamine metabolism. Biochem. Soc. Trans. 1986;14:1001–1004. doi: 10.1042/bst0141001.
    1. Watford M., Smith E.M. Distribution of hepatic glutaminase activity and mRNA in perivenous and periportal rat hepatocytes. Biochem. J. 1990;267:265–267. doi: 10.1042/bj2670265.
    1. Moorman A.F., de Boer P.A., Watford M., Dingemanse M.A., Lamers W.H. Hepatic glutaminase mRNA is confined to part of the urea cycle domain in the adult rodent liver lobule. FEBS Lett. 1994;356:76–80. doi: 10.1016/0014-5793(94)01230-X.
    1. Gebhardt R., Mecke D. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 1983;2:567–570. doi: 10.1002/j.1460-2075.1983.tb01464.x.
    1. Häussinger D., Soboll S., Meijer A.J., Gerok W., Tager J.M., Sies H. Role of plasma membrane transport in hepatic glutamine metabolism. Eur. J. Biochem. 1985;152:597–603. doi: 10.1111/j.1432-1033.1985.tb09237.x.
    1. Lenzen C., Soboll S., Sies H., Haussinger D. Ph control of hepatic glutamine degradation. Role of transport. Eur. J. Biochem. 1987;166:483–488. doi: 10.1111/j.1432-1033.1987.tb13541.x.
    1. Häussinger D., Hallbrucker C., Saha N., Lang F., Gerok W. Cell volume and bile acid excretion. Biochem. J. 1992;288:681–689. doi: 10.1042/bj2880681.
    1. Haussinger D., Lang F. Cell volume in the regulation of hepatic function: A mechanism for metabolic control. Biochim. Biophys. Acta. 1991;1071:331–350. doi: 10.1016/0304-4157(91)90001-D.
    1. Gustafson L.A., Jumelle-Laclau M.N., van Woerkom G.M., van Kuilenburg A.B.P., Meijer A.J. Cell swelling and glycogen metabolism in hepatocytes from fasted rats. Biochim. Biophys. Acta. 1997;1318:184–190. doi: 10.1016/S0005-2728(96)00128-4.
    1. Baquet A., Gaussin V., Bollen M., Stalmans W., Hue L. Mechanism of activation of liver acetyl-coa carboxylase by cell swelling. Eur. J. Biochem. 1993;217:1083–1089. doi: 10.1111/j.1432-1033.1993.tb18340.x.
    1. Vom Dahl S., Dombrowski F., Schmitt M., Schliess F., Pfeifer U., Häussinger D. Cell hydration controls autophagosome formation in rat liver in a microtubule-dependent way downstream from p38mapk activation. Biochem. J. 2001;354:31–36. doi: 10.1042/bj3540031.
    1. Vom Dahl S., Haussinger D. Nutritional state and the swelling-induced inhibition of proteolysis in perfused rat liver. J. Nutr. 1996;126:395–402. doi: 10.1093/jn/126.2.395.
    1. Häussinger D., Kubitz R., Reinehr R., Bode J.G., Schliess F. Molecular aspects of medicine: From experimental to clinical hepatology. Mol. Asp. Med. 2004;25:221–360. doi: 10.1016/j.mam.2004.02.001.
    1. Jansen L.T., Adams J., Johnson E.C., Kavouras S.A. Effects of cellular dehydration on glucose regulation in healthy males—A pilot study. FASEB J. 2017;31:1014-2.
    1. Friedman S.L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 2000;275:2247–2250. doi: 10.1074/jbc.275.4.2247.
    1. Ghazwani M., Zhang Y., Gao X., Fan J., Li J., Li S. Anti-fibrotic effect of thymoquinone on hepatic stellate cells. Phytomedicine. 2014;21:254–260. doi: 10.1016/j.phymed.2013.09.014.
    1. Li J., Ghazwani M., Liu K., Huang Y., Chang N., Fan J., He F., Li L., Bu S., Xie W., et al. Regulation of hepatic stellate cell proliferation and activation by glutamine metabolism. PLoS ONE. 2017;12:e0182679. doi: 10.1371/journal.pone.0182679.
    1. Lin Z., Cai F., Lin N., Ye J., Zheng Q., Ding G. Effects of glutamine on oxidative stress and nuclear factor-κb expression in the livers of rats with nonalcoholic fatty liver disease. Exp. Ther. Med. 2014;7:365–370. doi: 10.3892/etm.2013.1434.
    1. Sellmann C., Baumann A., Brandt A., Jin C.J., Nier A., Bergheim I. Oral supplementation of glutamine attenuates the progression of nonalcoholic steatohepatitis in c57bl/6j mice. J. Nutr. 2017;147:2041–2049. doi: 10.3945/jn.117.253815.
    1. Magalhaes C.R., Malafaia O., Torres O.J., Moreira L.B., Tefil S.C., Pinherio Mda R., Harada B.A. Liver regeneration with l-glutamine supplemented diet: Experimental study in rats. Rev. Col. Bras. Cir. 2014;41:117–121. doi: 10.1590/S0100-69912014000200008.
    1. Helling G., Wahlin S., Smedberg M., Pettersson L., Tjäder I., Norberg Å., Rooyackers O., Wernerman J. Plasma glutamine concentrations in liver failure. PLoS ONE. 2016;11:e0150440. doi: 10.1371/journal.pone.0150440.
    1. Eagle H., Oyama V.I., Levy M., Horton C.L., Fleischman R. Growth response of mammalian cells in tissue culture to l-glutamine and l-glutamic acid. J. Biol. Chem. 1956;218:607–616.
    1. Newsholme P., Curi R., Gordon S., Newsholme E.A. Metabolism of glucose, glutamine, long-chain fatty-acids and ketone-bodies by murine macrophages. Biochem. J. 1986;239:121–125. doi: 10.1042/bj2390121.
    1. Newsholme E.A., Newsholme P., Curi R. The role of the citric acid cycle in cells of the immune system and its importance in sepsis, trauma and burns. Biochem. Soc. Symp. 1987;54:145–162.
    1. Curi R., Newsholme P., Newsholme E.A. Intracellular-distribution of some enzymes of the glutamine utilization pathway in rat lymphocytes. Biochem. Biophys. Res. Commun. 1986;138:318–322. doi: 10.1016/0006-291X(86)90282-2.
    1. Curi T.C.P., de Melo M.P., de Azevedo R.B., Curi R. Glutamine utilisation by rat neutrophils. Biochem. Soc. Trans. 1997;25:249S. doi: 10.1042/bst025249s.
    1. Curi T.C.P., DeMelo M.P., DeAzevedo R.B., Zorn T.M.T., Curi R. Glutamine utilization by rat neutrophils: Presence of phosphate-dependent glutaminase. Am. J. Physiol. Cell Physiol. 1997;273:C1124–C1129. doi: 10.1152/ajpcell.1997.273.4.C1124.
    1. Oudemans-van Straaten H.M., Bosman R.J., Treskes M., van der Spoel H.J., Zandstra D.F. Plasma glutamine depletion and patient outcome in acute icu admissions. Intensiv. Care Med. 2001;27:84–90. doi: 10.1007/s001340000703.
    1. Leite J.S.M., Cruzat V.F., Krause M., Homem de Bittencourt P.I. Physiological regulation of the heat shock response by glutamine: Implications for chronic low-grade inflammatory diseases in age-related conditions. Nutrire. 2016;41:17. doi: 10.1186/s41110-016-0021-y.
    1. Roth E., Oehler R., Manhart N., Exner R., Wessner B., Strasser E., Spittler A. Regulative potential of glutamine—Relation to glutathione metabolism. Nutrition. 2002;18:217–221. doi: 10.1016/S0899-9007(01)00797-3.
    1. Hiscock N., Petersen E.W., Krzywkowski K., Boza J., Halkjaer-Kristensen J., Pedersen B.K. Glutamine supplementation further enhances exercise-induced plasma il-6. J. Appl. Physiol. 2003;95:145–148. doi: 10.1152/japplphysiol.00471.2002.
    1. Mills E.L., Kelly B., O’Neill L.A.J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 2017;18:488–498. doi: 10.1038/ni.3704.
    1. Pithon-Curi T.C., De Melo M.P., Curi R. Glucose and glutamine utilization by rat lymphocytes, monocytes and neutrophils in culture: A comparative study. Cell Biochem. Funct. 2004;22:321–326. doi: 10.1002/cbf.1109.
    1. Pithon-Curi T.C., Trezena A.G., Tavares-Lima W., Curi R. Evidence that glutamine is involved in neutrophil function. Cell Biochem. Funct. 2002;20:81–86. doi: 10.1002/cbf.954.
    1. Branzk N., Lubojemska A., Hardison S.E., Wang Q., Gutierrez M.G., Brown G.D., Papayannopoulos V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 2014;15:1017–1025. doi: 10.1038/ni.2987.
    1. Pithon-Curi T.C., Levada A.C., Lopes L.R., Doi S.Q., Curi R. Glutamine plays a role in superoxide production and the expression of p47(phox), p22(phox) and gp91(phox) in rat neutrophils. Clin. Sci. 2002;103:403–408. doi: 10.1042/cs1030403.
    1. Garcia C., Pithon-Curi T.C., de Lourdes Firmano M., Pires de Melo M., Newsholme P., Curi R. Effects of adrenaline on glucose and glutamine metabolism and superoxide production by rat neutrophils. Clin. Sci. 1999;96:549–555. doi: 10.1042/cs0960549.
    1. Newsholme P., Costa Rosa L.F., Newsholme E.A., Curi R. The importance of fuel metabolism to macrophage function. Cell Biochem. Funct. 1996;14:1–10. doi: 10.1002/cbf.644.
    1. Peres C.M., Procopio J., Costa M., Curi R. Thioglycolate-elicited rat macrophages exhibit alterations in incorporation and oxidation of fatty acids. Lipids. 1999;34:1193–1197. doi: 10.1007/s11745-999-0471-8.
    1. Costa Rosa L.F., Safi D.A., Curi R. Effect of thioglycollate and bcg stimuli on glucose and glutamine metabolism in rat macrophages. J. Leukoc. Biol. 1994;56:10–14.
    1. Nagy C., Haschemi A. Time and demand are two critical dimensions of immunometabolism: The process of macrophage activation and the pentose phosphate pathway. Front. Immunol. 2015;6:164. doi: 10.3389/fimmu.2015.00164.
    1. Langston P.K., Shibata M., Horng T. Metabolism supports macrophage activation. Front. Immunol. 2017;8:61. doi: 10.3389/fimmu.2017.00061.
    1. Vergadi E., Ieronymaki E., Lyroni K., Vaporidi K., Tsatsanis C. Akt signaling pathway in macrophage activation and m1/m2 polarization. J. Immunol. 2017;198:1006–1014. doi: 10.4049/jimmunol.1601515.
    1. Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front. Biosci. 2008;13:453–461. doi: 10.2741/2692.
    1. Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005;5:953–964. doi: 10.1038/nri1733.
    1. Gordon S., Martinez F.O. Alternative activation of macrophages: Mechanism and functions. Immunity. 2010;32:593–604. doi: 10.1016/j.immuni.2010.05.007.
    1. Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008;8:958–969. doi: 10.1038/nri2448.
    1. O’Neill L.A., Pearce E.J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 2016;213:15–23. doi: 10.1084/jem.20151570.
    1. Namgaladze D., Brune B. Fatty acid oxidation is dispensable for human macrophage il-4-induced polarization. Biochim. Biophys. Acta. 2014;1841:1329–1335. doi: 10.1016/j.bbalip.2014.06.007.
    1. O’Neill L.A. A broken krebs cycle in macrophages. Immunity. 2015;42:393–394. doi: 10.1016/j.immuni.2015.02.017.
    1. Warburg O., Wind F., Negelein E. The metabolism of tumors in the body. J. Gen. Physiol. 1927;8:519–530. doi: 10.1085/jgp.8.6.519.
    1. Palsson-McDermott E.M., Curtis A.M., Goel G., Lauterbach M.A., Sheedy F.J., Gleeson L.E., van den Bosch M.W., Quinn S.R., Domingo-Fernandez R., Johnston D.G., et al. Pyruvate kinase M2 regulates hif-1alpha activity and il-1beta induction and is a critical determinant of the warburg effect in lps-activated macrophages. Cell Metab. 2015;21:65–80. doi: 10.1016/j.cmet.2014.12.005.
    1. Oren R., Farnham A.E., Saito K., Milofsky E., Karnovsky M.L. Metabolic patterns in three types of phagocytizing cells. J. Cell Biol. 1963;17:487–501. doi: 10.1083/jcb.17.3.487.
    1. Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E.M., McGettrick A.F., Goel G., Frezza C., Bernard N.J., Kelly B., Foley N.H., et al. Succinate is an inflammatory signal that induces il-1β through hif-1α. Nature. 2013;496:238–242. doi: 10.1038/nature11986.
    1. Jha A.K., Huang S.C., Sergushichev A., Lampropoulou V., Ivanova Y., Loginicheva E., Chmielewski K., Stewart K.M., Ashall J., Everts B., et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42:419–430. doi: 10.1016/j.immuni.2015.02.005.
    1. Davies L.C., Rice C.M., Palmieri E.M., Taylor P.R., Kuhns D.B., McVicar D.W. Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nat. Commun. 2017;8:2074. doi: 10.1038/s41467-017-02092-0.
    1. Liu P.S., Wang H., Li X., Chao T., Teav T., Christen S., Di Conza G., Cheng W.C., Chou C.H., Vavakova M., et al. Alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 2017;18:985–994.
    1. Nelson V.L., Nguyen H.C.B., Garcia-Canaveras J.C., Briggs E.R., Ho W.Y., DiSpirito J.R., Marinis J.M., Hill D.A., Lazar M.A. Ppargamma is a nexus controlling alternative activation of macrophages via glutamine metabolism. Gen. Dev. 2018;32:1035–1044. doi: 10.1101/gad.312355.118.
    1. Greiner E.F., Guppy M., Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J. Biol. Chem. 1994;269:31484–31490.
    1. Newsholme E.A., Crabtree B., Ardawi M.S. Glutamine metabolism in lymphocytes: Its biochemical, physiological and clinical importance. Q. J. Exp. Physiol. 1985;70:473–489. doi: 10.1113/expphysiol.1985.sp002935.
    1. Curi R., Newsholme P., Newsholme E.A. Metabolism of pyruvate by isolated rat mesenteric lymphocytes, lymphocyte mitochondria and isolated mouse macrophages. Biochem. J. 1988;250:383–388. doi: 10.1042/bj2500383.
    1. Maciolek J.A., Pasternak J.A., Wilson H.L. Metabolism of activated t lymphocytes. Curr. Opin. Immunol. 2014;27:60–74. doi: 10.1016/j.coi.2014.01.006.
    1. Tripmacher R., Gaber T., Dziurla R., Haupl T., Erekul K., Grutzkau A., Tschirschmann M., Scheffold A., Radbruch A., Burmester G.R., et al. Human cd4(+) T cells maintain specific functions even under conditions of extremely restricted ATP production. Eur. J. Immunol. 2008;38:1631–1642. doi: 10.1002/eji.200738047.
    1. Wieman H.L., Wofford J.A., Rathmell J.C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/akt regulation of glut1 activity and trafficking. Mol. Biol. Cell. 2007;18:1437–1446. doi: 10.1091/mbc.e06-07-0593.
    1. Delgoffe G.M., Kole T.P., Zheng Y., Zarek P.E., Matthews K.L., Xiao B., Worley P.F., Kozma S.C., Powell J.D. The mtor kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–844. doi: 10.1016/j.immuni.2009.04.014.
    1. Lee K., Gudapati P., Dragovic S., Spencer C., Joyce S., Killeen N., Magnuson M.A., Boothby M. Mammalian target of rapamycin protein complex 2 regulates differentiation of th1 and th2 cell subsets via distinct signaling pathways. Immunity. 2010;32:743–753. doi: 10.1016/j.immuni.2010.06.002.
    1. Michalek R.D., Gerriets V.A., Jacobs S.R., Macintyre A.N., MacIver N.J., Mason E.F., Sullivan S.A., Nichols A.G., Rathmell J.C. Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory cd4+ T cell subsets. J. Immunol. 2011;186:3299–3303. doi: 10.4049/jimmunol.1003613.
    1. Hardie D.G., Hawley S.A., Scott J.W. Amp-activated protein kinas—Development of the energy sensor concept. J. Physiol. 2006;574:7–15. doi: 10.1113/jphysiol.2006.108944.
    1. Crawford J., Cohen H.J. The essential role of l-glutamine in lymphocyte differentiation in vitro. J. Cell. Physiol. 1985;124:275–282. doi: 10.1002/jcp.1041240216.
    1. Matarese G., Colamatteo A., De Rosa V. Metabolic fuelling of proper t cell functions. Immunol. Lett. 2014;161:174–178. doi: 10.1016/j.imlet.2013.12.012.
    1. Chang C.H., Curtis J.D., Maggi L.B., Jr., Faubert B., Villarino A.V., O’Sullivan D., Huang S.C., van der Windt G.J., Blagih J., Qiu J., et al. Posttranscriptional control of t cell effector function by aerobic glycolysis. Cell. 2013;153:1239–1251. doi: 10.1016/j.cell.2013.05.016.
    1. Zheng Y., Delgoffe G.M., Meyer C.F., Chan W., Powell J.D. Anergic T cells are metabolically anergic. J. Immunol. 2009;183:6095–6101. doi: 10.4049/jimmunol.0803510.
    1. Buck M.D., O’Sullivan D., Klein Geltink R.I., Curtis J.D., Chang C.H., Sanin D.E., Qiu J., Kretz O., Braas D., van der Windt G.J., et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166:63–76. doi: 10.1016/j.cell.2016.05.035.
    1. Corcoran S.E., O’Neill L.A. Hif1alpha and metabolic reprogramming in inflammation. J. Clin. Investig. 2016;126:3699–3707. doi: 10.1172/JCI84431.
    1. Araujo L., Khim P., Mkhikian H., Mortales C.L., Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to n-glycosylation. eLife. 2017;6:e21330. doi: 10.7554/eLife.21330.
    1. Hesterberg R.S., Cleveland J.L., Epling-Burnette P.K. Role of polyamines in immune cell functions. Med. Sci. 2018;6:22. doi: 10.3390/medsci6010022.
    1. Calder P.C., Yaqoob P. Glutamine and the immune system. Amino Acids. 1999;17:227–241. doi: 10.1007/BF01366922.
    1. Wilmore D.W., Shabert J.K. Role of glutamine in immunologic responses. Nutrition. 1998;14:618–626. doi: 10.1016/S0899-9007(98)00009-4.
    1. Lagranha C.J., Hirabara S.M., Curi R., Pithon-Curi T.C. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 mapk and jnk phosphorylation and p53 and caspase 3 expression. Cell Biochem. Funct. 2007;25:563–569. doi: 10.1002/cbf.1421.
    1. Young V.R., Ajami A.M. Glutamine: The emperor or his clothes? J. Nutr. 2001;131:2447S–2486S. doi: 10.1093/jn/131.9.2449S.
    1. Meister A., Anderson M.E. Glutathione. Ann. Rev. Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431.
    1. Gaucher C., Boudier A., Bonetti J., Clarot I., Leroy P., Parent M. Glutathione: Antioxidant properties dedicated to nanotechnologies. Antioxidants. 2018;7:62. doi: 10.3390/antiox7050062.
    1. Liu N., Ma X., Luo X., Zhang Y., He Y., Dai Z., Yang Y., Wu G., Wu Z. l-glutamine attenuates apoptosis in porcine enterocytes by regulating glutathione-related redox homeostasis. J. Nutr. 2018;148:526–534. doi: 10.1093/jn/nxx062.
    1. Da Silva Lima F., Rogero M.M., Ramos M.C., Borelli P., Fock R.A. Modulation of the nuclear factor-kappa b (nf-kappab) signalling pathway by glutamine in peritoneal macrophages of a murine model of protein malnutrition. Eur. J. Nutr. 2013;52:1343–1351. doi: 10.1007/s00394-012-0443-0.
    1. Smedberg M., Wernerman J. Is the glutamine story over? Crit. Care. 2016;20:361. doi: 10.1186/s13054-016-1531-y.
    1. Heck T.G., Scholer C.M., de Bittencourt P.I. Hsp70 expression: Does it a novel fatigue signalling factor from immune system to the brain? Cell Biochem. Funct. 2011;29:215–226. doi: 10.1002/cbf.1739.
    1. Singleton K.D., Wischmeyer P.E. Glutamine’s protection against sepsis and lung injury is dependent on heat shock protein 70 expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R1839–R1845. doi: 10.1152/ajpregu.00755.2006.
    1. Jordan I., Balaguer M., Esteban M.E., Cambra F.J., Felipe A., Hernandez L., Alsina L., Molero M., Villaronga M., Esteban E. Glutamine effects on heat shock protein 70 and interleukines 6 and 10: Randomized trial of glutamine supplementation versus standard parenteral nutrition in critically ill children. Clin. Nutr. 2016;35:34–40. doi: 10.1016/j.clnu.2015.01.019.
    1. Kim G., Meriin A.B., Gabai V.L., Christians E., Benjamin I., Wilson A., Wolozin B., Sherman M.Y. The heat shock transcription factor hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell. 2012;11:617–627. doi: 10.1111/j.1474-9726.2012.00827.x.
    1. Gabai V.L., Meng L., Kim G., Mills T.A., Benjamin I.J., Sherman M.Y. Heat shock transcription factor hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HUR. Mol. Cell. Biol. 2012;32:929–940. doi: 10.1128/MCB.05921-11.
    1. Dokladny K., Zuhl M.N., Mandell M., Bhattacharya D., Schneider S., Deretic V., Moseley P.L. Regulatory coordination between two major intracellular homeostatic systems: Heat shock response and autophagy. J. Biolog. Chem. 2013;288:14959–14972. doi: 10.1074/jbc.M113.462408.
    1. Martinez M.R., Dias T.B., Natov P.S., Zachara N.E. Stress-induced o-glcnacylation: An adaptive process of injured cells. Biochem. Soc. Trans. 2017;45:237–249. doi: 10.1042/BST20160153.
    1. Lafontaine-Lacasse M., Dore G., Picard F. Hexosamines stimulate apoptosis by altering sirt1 action and levels in rodent pancreatic beta-cells. J. Endoc. 2011;208:41–49. doi: 10.1677/JOE-10-0243.
    1. Kazemi Z., Chang H., Haserodt S., McKen C., Zachara N.E. O-linked beta-n-acetylglucosamine (o-glcnac) regulates stress-induced heat shock protein expression in a gsk-3beta-dependent manner. J. Biol. Chem. 2010;285:39096–39107. doi: 10.1074/jbc.M110.131102.
    1. Hamiel C.R., Pinto S., Hau A., Wischmeyer P.E. Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity. Am. J. Physiol. Cell Physiol. 2009;297:C1509–1519. doi: 10.1152/ajpcell.00240.2009.
    1. Singleton K.D., Serkova N., Beckey V.E., Wischmeyer P.E. Glutamine attenuates lung injury and improves survival after sepsis: Role of enhanced heat shock protein expression. Crit. Care Med. 2005;33:1206–1213. doi: 10.1097/01.CCM.0000166357.10996.8A.
    1. Raizel R., Leite J.S., Hypolito T.M., Coqueiro A.Y., Newsholme P., Cruzat V.F., Tirapegui J. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br. J. Nutr. 2016;116:470–479. doi: 10.1017/S0007114516001999.
    1. Smolka M.B., Zoppi C.C., Alves A.A., Silveira L.R., Marangoni S., Pereira-Da-Silva L., Novello J.C., Macedo D.V. Hsp72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;279:R1539–R1545. doi: 10.1152/ajpregu.2000.279.5.R1539.
    1. Gupta A., Cooper Z.A., Tulapurkar M.E., Potla R., Maity T., Hasday J.D., Singh I.S. Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J. Biolog. Chem. 2013;288:2756–2766. doi: 10.1074/jbc.M112.427336.
    1. Krause M., Keane K., Rodrigues-Krause J., Crognale D., Egan B., De Vito G., Murphy C., Newsholme P. Elevated levels of extracellular heat-shock protein 72 (ehsp72) are positively correlated with insulin resistance in vivo and cause pancreatic beta-cell dysfunction and death in vitro. Clin. Sci. 2014;126:739–752. doi: 10.1042/CS20130678.
    1. Lenders C.M., Liu S., Wilmore D.W., Sampson L., Dougherty L.W., Spiegelman D., Willett W.C. Evaluation of a novel food composition database that includes glutamine and other amino acids derived from gene sequencing data. Eur. J. Clin. Nutr. 2009;63:1433–1439. doi: 10.1038/ejcn.2009.110.
    1. Hermans G., Van den Berghe G. Clinical review: Intensive care unit acquired weakness. Crit. Care. 2015;19:274. doi: 10.1186/s13054-015-0993-7.
    1. Stehle P., Ellger B., Kojic D., Feuersenger A., Schneid C., Stover J., Scheiner D., Westphal M. Glutamine dipeptide-supplemented parenteral nutrition improves the clinical outcomes of critically ill patients: A systematic evaluation of randomised controlled trials. Clin. Nutr. ESPEN. 2017;17:75–85. doi: 10.1016/j.clnesp.2016.09.007.
    1. Gunst J., Vanhorebeek I., Thiessen S.E., Van den Berghe G. Amino acid supplements in critically ill patients. Pharmacol. Res. 2018;130:127–131. doi: 10.1016/j.phrs.2017.12.007.
    1. Furst P., Alteheld B., Stehle P. Why should a single nutrient—Glutamine—Improve outcome? The remarkable story of glutamine dipeptides. Clin. Nutr. Suppl. 2004;1:3–15. doi: 10.1016/S1744-1161(04)00003-1.
    1. Grau T., Bonet A., Minambres E., Pineiro L., Irles J.A., Robles A., Acosta J., Herrero I., Palacios V., Lopez J., et al. The effect of l-alanyl-l-glutamine dipeptide supplemented total parenteral nutrition on infectious morbidity and insulin sensitivity in critically ill patients. Crit. Care Med. 2011;39:1263–1268. doi: 10.1097/CCM.0b013e31820eb774.
    1. Estivariz C.F., Griffith D.P., Luo M., Szeszycki E.E., Bazargan N., Dave N., Daignault N.M., Bergman G.F., McNally T., Battey C.H., et al. Efficacy of parenteral nutrition supplemented with glutamine dipeptide to decrease hospital infections in critically ill surgical patients. J. Parenter. Enter. Nutr. 2008;32:389–402. doi: 10.1177/0148607108317880.
    1. Wang Y., Jiang Z.M., Nolan M.T., Jiang H., Han H.R., Yu K., Li H.L., Jie B., Liang X.K. The impact of glutamine dipeptide-supplemented parenteral nutrition on outcomes of surgical patients: A meta-analysis of randomized clinical trials. J. Parenter. Enter. Nutr. 2010;34:521–529. doi: 10.1177/0148607110362587.
    1. Bollhalder L., Pfeil A.M., Tomonaga Y., Schwenkglenks M. A systematic literature review and meta-analysis of randomized clinical trials of parenteral glutamine supplementation. Clin. Nutr. 2013;32:213–223. doi: 10.1016/j.clnu.2012.11.003.
    1. Dechelotte P., Hasselmann M., Cynober L., Allaouchiche B., Coeffier M., Hecketsweiler B., Merle V., Mazerolles M., Samba D., Guillou Y.M., et al. l-alanyl-l-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: The french controlled, randomized, double-blind, multicenter study. Crit. Care Med. 2006;34:598–604. doi: 10.1097/01.CCM.0000201004.30750.D1.
    1. Weitzel L.R., Wischmeyer P.E. Glutamine in critical illness: The time has come, the time is now. Crit. Care Clin. 2010;26:515–525. doi: 10.1016/j.ccc.2010.04.006.
    1. Klassen P., Mazariegos M., Solomons N.W., Furst P. The pharmacokinetic responses of humans to 20 g of alanyl-glutamine dipeptide differ with the dosing protocol but not with gastric acidity or in patients with acute dengue fever. J. Nutr. 2000;130:177–182. doi: 10.1093/jn/130.2.177.
    1. Melis G.C., Boelens P.G., van der Sijp J.R., Popovici T., De Bandt J.P., Cynober L., van Leeuwen P.A. The feeding route (enteral or parenteral) affects the plasma response of the dipetide ala-gln and the amino acids glutamine, citrulline and arginine, with the administration of ala-gln in preoperative patients. Br. J. Nutr. 2005;94:19–26. doi: 10.1079/BJN20051463.
    1. Krause M.S., de Bittencourt P.I.H.J. Type 1 diabetes: Can exercise impair the autoimmune event? The l-arginine/glutamine coupling hypothesis. Cell Biochem. Funct. 2008;26:406–433. doi: 10.1002/cbf.1470.
    1. Adibi S.A. Regulation of expression of the intestinal oligopeptide transporter (pept-1) in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;285:G779–G788. doi: 10.1152/ajpgi.00056.2003.
    1. Broer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 2008;88:249–286. doi: 10.1152/physrev.00018.2006.
    1. Gilbert E.R., Wong E.A., Webb K.E. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci. 2008;86:2135–2155. doi: 10.2527/jas.2007-0826.
    1. Petry E.R., Cruzat V.F., Heck T.G., de Bittencourt P.I.H., Tirapegui J. l-glutamine supplementations enhance liver glutamine-glutathione axis and heat shock factor-1 expression in endurance-exercise trained rats. Int. J. Sport Nutr. Exerc. Metab. 2015;25:188–197. doi: 10.1123/ijsnem.2014-0131.
    1. Alba-Loureiro T.C., Ribeiro R.F., Zorn T.M., Lagranha C.J. Effects of glutamine supplementation on kidney of diabetic rat. Amino Acids. 2010;38:1021–1030. doi: 10.1007/s00726-009-0310-3.
    1. Cheng T., Sudderth J., Yang C., Mullen A.R., Jin E.S., Mates J.M., DeBerardinis R.J. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc. Natl. Acad Sci. USA. 2011;108:8674–8679. doi: 10.1073/pnas.1016627108.
    1. Hensley C.T., Wasti A.T., DeBerardinis R.J. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Investig. 2013;123:3678–3684. doi: 10.1172/JCI69600.
    1. Hensley C.T., Faubert B., Yuan Q., Lev-Cohain N., Jin E., Kim J., Jiang L., Ko B., Skelton R., Loudat L., et al. Metabolic heterogeneity in human lung tumors. Cell. 2016;164:681–694. doi: 10.1016/j.cell.2015.12.034.
    1. Davidson S.M., Papagiannakopoulos T., Olenchock B.A., Heyman J.E., Keibler M.A., Luengo A., Bauer M.R., Jha A.K., O’Brien J.P., Pierce K.A., et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 2016;23:517–528. doi: 10.1016/j.cmet.2016.01.007.
    1. Choi C., Ganji S., Hulsey K., Madan A., Kovacs Z., Dimitrov I., Zhang S., Pichumani K., Mendelsohn D., Mickey B., et al. A comparative study of short- and long-te (1) h mrs at 3 t for in vivo detection of 2-hydroxyglutarate in brain tumors. NMR Biomed. 2013;26:1242–1250. doi: 10.1002/nbm.2943.
    1. Tardito S., Oudin A., Ahmed S.U., Fack F., Keunen O., Zheng L., Miletic H., Sakariassen P.O., Weinstock A., Wagner A., et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 2015;17:1556–1568. doi: 10.1038/ncb3272.
    1. Deep G., Schlaepfer I.R. Aberrant lipid metabolism promotes prostate cancer: Role in cell survival under hypoxia and extracellular vesicles biogenesis. Int. J. Mol. Sci. 2016;17:1061. doi: 10.3390/ijms17071061.
    1. White M.A., Lin C., Rajapakshe K., Dong J., Shi Y., Tsouko E., Mukhopadhyay R., Jasso D., Dawood W., Coarfa C., et al. Glutamine transporters are targets of multiple oncogenic signaling pathways in prostate cancer. Mol. Cancer Res. 2017;15:1017–1028. doi: 10.1158/1541-7786.MCR-16-0480.
    1. Marian M.J. Dietary supplements commonly used by cancer survivors: Are there any benefits? Nutr. Clin. Pract. 2017;32:607–627. doi: 10.1177/0884533617721687.
    1. Sayles C., Hickerson S.C., Bhat R.R., Hall J., Garey K.W., Trivedi M.V. Oral glutamine in preventing treatment-related mucositis in adult patients with cancer: A systematic review. Nutr. Clin. Pract. 2016;31:171–179. doi: 10.1177/0884533615611857.
    1. Daniele B., Perrone F., Gallo C., Pignata S., De Martino S., De Vivo R., Barletta E., Tambaro R., Abbiati R., D’Agostino L. Oral glutamine in the prevention of fluorouracil induced intestinal toxicity: A double blind, placebo controlled, randomised trial. Gut. 2001;48:28–33. doi: 10.1136/gut.48.1.28.
    1. Hammarqvist F., Wernerman J., Ali R., von der Decken A., Vinnars E. Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann. Surg. 1989;209:455–461. doi: 10.1097/00000658-198904000-00011.
    1. Souba W.W., Herskowitz K., Klimberg V.S., Salloum R.M., Plumley D.A., Flynn T.C., Copeland E.M. The effects of sepsis and endotoxemia on gut glutamine metabolism. Ann. Surg. 1990;211:543–551. doi: 10.1097/00000658-199005000-00004.
    1. Bode B.P., Fuchs B.C., Hurley B.P., Conroy J.L., Suetterlin J.E., Tanabe K.K., Rhoads D.B., Abcouwer S.F., Souba W.W. Molecular and functional analysis of glutamine uptake in human hepatoma and liver-derived cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2002;283:G1062–G1073. doi: 10.1152/ajpgi.00031.2002.
    1. Rogero M.M., Borelli P., Fock R.A., Borges M.C., Vinolo M.A.R., Curi R., Nakajima K., Crisma A.R., Ramos A.D., Tirapegui J. Effects of glutamine on the nuclear factor-kappab signaling pathway of murine peritoneal macrophages. Amino Acids. 2010;39:435–441. doi: 10.1007/s00726-009-0459-9.
    1. Parry-Billings M., Evans J., Calder P.C., Newsholme E.A. Does glutamine contribute to immunosuppression after major burns? Lancet. 1990;336:523–525. doi: 10.1016/0140-6736(90)92083-T.
    1. Roth E., Funovics J., Muhlbacher F., Schemper M., Mauritz W., Sporn P., Fritsch A. Metabolic disorders in severe abdominal sepsis: Glutamine deficiency in skeletal muscle. Clin. Nutr. 1982;1:25–41. doi: 10.1016/0261-5614(82)90004-8.

Source: PubMed

3
S'abonner