Performance of Contrast-Enhanced Ultrasound in Thyroid Nodules: Review of Current State and Future Perspectives

Maija Radzina, Madara Ratniece, Davis Simanis Putrins, Laura Saule, Vito Cantisani, Maija Radzina, Madara Ratniece, Davis Simanis Putrins, Laura Saule, Vito Cantisani

Abstract

Ultrasound has been established as a baseline imaging technique for thyroid nodules. The main advantage of adding CEUS is the ability to assess the sequence and intensity of vascular perfusion and hemodynamics in the thyroid nodule, thus providing real-time characterization of nodule features, considered a valuable new approach in the determination of benign vs. malignant nodules. Original studies, reviews and six meta-analyses were included in this article. A total of 624 studies were retrieved, and 107 were included in the study. As recognized for thyroid nodule malignancy risk stratification by US, for acceptable accuracy in malignancy a combination of several CEUS parameters should be applied: hypo-enhancement, heterogeneous, peripheral irregular enhancement in combination with internal enhancement patterns, and slow wash-in and wash-out curve lower than in normal thyroid tissue. In contrast, homogeneous, intense enhancement with smooth rim enhancement and "fast-in and slow-out" are indicative of the benignity of the thyroid nodule. Even though overlapping features require standardization, with further research, CEUS may achieve reliable performance in detecting or excluding thyroid cancer. It can also play an operative role in guiding ablation procedures of benign and malignant thyroid nodules and metastatic lymph nodes, and providing accurate follow-up imaging to assess treatment efficacy.

Keywords: contrast-enhanced ultrasound (CEUS); follicular thyroid cancer; papillary thyroid cancer; thyroid cancer; thyroid nodules.

Conflict of interest statement

Maija Radzina has received the speaker honoraria from Bracco and Canon, other co-authors have nothing to disclose.

Figures

Figure 1
Figure 1
Right lobe hypoechoic lesion with halo sign, TIRADS 3, Bethesda 2, Follicular hyperplasia (a)—B mode hypo-echogenicity of the structure; (b) color Doppler shows hypervascularity in peripheral part of the lesion; (c) contrast enhancement is predominantly peripheral with smooth ring enhancement, with areas of rapid and intense vascularization in periphery and slow in the center (d) and suggestive slow wash-out (e) in comparison to the adjacent parenchyma.
Figure 2
Figure 2
Right lobe heterogeneous lesion, TIRADS 4, Bethesda 5, Papillary cancer (a)—B mode hypo-echogenicity of the structure with cystic components; (b) Color Doppler shows hypervascularity in one part of the lesion, (c) contrast enhancement is heterogeneous with areas of low vascularization suggestive of malignancy and (d) confirming quantitative difference within the malignant tumor parts (yellow—necrotic areas, blue—intense enhancement and slow wash-out curve).
Figure 3
Figure 3
Right lobe heterogeneous lesion, TIRADS 3, Bethesda 2, Follicular adenoma, (a) B mode mildly heterogeneous structure with cystic components; (b) Color Doppler shows hypervascularity in periphery of the lesion, (c) contrast enhancement is predominantly hyper-vascular and homogeneous with minor parts of lower vascularization prior to the ablation treatment; (d) 6 months after radiofrequency ablation volume reduction by 52% has been reached, and avascular necrotic areas (black areas) are well delineated within nodule for further treatment planning.

References

    1. Haugen B.R., Alexander E.K., Bible K.C., Doherty G.M., Mandel S.J., Nikiforov Y.E., Pacini F., Randolph G.W., Sawka A.M., Schlumberger M., et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133. doi: 10.1089/thy.2015.0020.
    1. Durante C., Grani G., Lamartina L., Filetti S., Mandel S.J., Cooper D.S. The Diagnosis and Management of Thyroid Nodules: A Review. JAMA. 2018;319:914–924. doi: 10.1001/jama.2018.0898.
    1. Pang T., Huang L., Deng Y., Wang T., Chen S., Gong X., Liu W. Logistic Regression Analysis of Conventional Ultrasonography, Strain Elastosonography, and Contrast-Enhanced Ultrasound Characteristics for the Differentiation of Benign and Malignant Thyroid Nodules. PLoS ONE. 2017;12:e0188987. doi: 10.1371/journal.pone.0188987.
    1. Chng C., Kurzawinski T.R., Beale T. Value of Sonographic Features in Predicting Malignancy in Thyroid Nodules Diagnosed as Follicular Neoplasm on Cytology. Clin. Endocrinol. 2015;83:711–716. doi: 10.1111/cen.12692.
    1. Jiang H., Tian Y., Yan W., Kong Y., Wang H., Wang A., Dou J., Liang P., Mu Y. The Prevalence of Thyroid Nodules and an Analysis of Related Lifestyle Factors in Beijing Communities. Int. J. Environ. Res. Public Health. 2016;13:442. doi: 10.3390/ijerph13040442.
    1. Bomeli S.R., LeBeau S.O., Ferris R.L. Evaluation of a Thyroid Nodule. Otolaryngol. Clin. N. Am. 2010;43:229–238. doi: 10.1016/j.otc.2010.01.002.
    1. Vigneri R., Malandrino P., Vigneri P. The Changing Epidemiology of Thyroid Cancer. Curr. Opin. Oncol. 2015;27:1–7. doi: 10.1097/CCO.0000000000000148.
    1. Kuhn E., Teller L., Piana S., Rosai J., Merino M.J. Different Clonal Origin of Bilateral Papillary Thyroid Carcinoma, with a Review of the Literature. Endocr. Pathol. 2012;23:101–107. doi: 10.1007/s12022-012-9202-2.
    1. Zhang Y., Luo Y., Zhang M., Li J., Li J., Tang J. Diagnostic Accuracy of Contrast-Enhanced Ultrasound Enhancement Patterns for Thyroid Nodules. Med. Sci. Monit. 2016;22:4755–4764. doi: 10.12659/MSM.899834.
    1. Melany M., Chen S. Thyroid Cancer Ultrasound Imaging and Fine-Needle Aspiration Biopsy. Endocrinol. Metab. Clin. 2017;46:691–711. doi: 10.1016/j.ecl.2017.04.011.
    1. Russ G., Bonnema S.J., Erdogan M.F., Durante C., Ngu R., Leenhardt L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017;6:225–237. doi: 10.1159/000478927.
    1. Shin J.H., Baek J.H., Chung J., Ha E.J., Kim J., Lee Y.H., Lim H.K., Moon W.-J., Na D.G., Park J.S., et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016;17:370–395. doi: 10.3348/kjr.2016.17.3.370.
    1. Ozel A., Erturk S.M., Ercan A., Yılmaz B., Basak T., Cantisani V., Basak M., Karpat Z. The Diagnostic Efficiency of Ultrasound in Characterization for Thyroid Nodules: How Many Criteria Are Required to Predict Malignancy? Med. Ultrason. 2012;14:24–28.
    1. Kim B.K., Choi Y.S., Kwon H.J., Lee J.S., Heo J.J., Han Y.J., Park Y.-H., Kim J.H. Relationship between Patterns of Calcification in Thyroid Nodules and Histopathologic Findings. Endocr. J. 2013;60:155–160. doi: 10.1507/endocrj.EJ12-0294.
    1. Sultan L.R., Xiong H., Zafar H.M., Schultz S.M., Langer J.E., Sehgal C.M. Vascularity Assessment of Thyroid Nodules by Quantitative Color Doppler Ultrasound. Ultrasound Med. Biol. 2015;41:1287–1293. doi: 10.1016/j.ultrasmedbio.2015.01.001.
    1. Lu R., Meng Y., Zhang Y., Zhao W., Wang X., Jin M., Guo R. Superb Microvascular Imaging (SMI) Compared with Conventional Ultrasound for Evaluating Thyroid Nodules. BMC Med. Imaging. 2017;17:65. doi: 10.1186/s12880-017-0241-5.
    1. Tessler F.N., Middleton W.D., Grant E.G., Hoang J.K., Berland L.L., Teefey S.A., Cronan J.J., Beland M.D., Desser T.S., Frates M.C., et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017;14:587–595. doi: 10.1016/j.jacr.2017.01.046.
    1. Kwak J.Y., Han K.H., Yoon J.H., Moon H.J., Son E.J., Park S.H., Jung H.K., Choi J.S., Kim B.M., Kim E.-K. Thyroid Imaging Reporting and Data System for US Features of Nodules: A Step in Establishing Better Stratification of Cancer Risk. Radiology. 2011;260:892–899. doi: 10.1148/radiol.11110206.
    1. Grani G., Lamartina L., Ascoli V., Bosco D., Biffoni M., Giacomelli L., Maranghi M., Falcone R., Ramundo V., Cantisani V., et al. Reducing the Number of Unnecessary Thyroid Biopsies while Improving Diagnostic Accuracy: Toward the “Right” TIRADS. J. Clin. Endocrinol. Metab. 2019;104:95–102. doi: 10.1210/jc.2018-01674.
    1. Bongiovanni M., Spitale A., Faquin W.C., Mazzucchelli L., Baloch Z.W. The Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis. Acta Cytol. 2012;56:333–339. doi: 10.1159/000339959.
    1. Cantisani V., David E., Grazhdani H., Rubini A., Radzina M., Dietrich C., Durante C., Lamartina L., Grani G., Valeria A., et al. Prospective Evaluation of Semiquantitative Strain Ratio and Quantitative 2D Ultrasound Shear Wave Elastography (SWE) in Association with TIRADS Classification for Thyroid Nodule Characterization. Ultraschall Der Medizin Eur. J. Ultrasound. 2019;40:495–503. doi: 10.1055/a-0853-1821.
    1. Săftoiu A., Gilja O., Sidhu P., Dietrich C., Cantisani V., Amy D., Bachmann-Nielsen M., Bob F., Bojunga J., Brock M., et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018. Ultraschall Der Medizin Eur. J. Ultrasound. 2019;40:425–453. doi: 10.1055/a-0838-9937.
    1. Greis C. Quantitative Evaluation of Microvascular Blood Flow by Contrast-Enhanced Ultrasound (CEUS) Clin. Hemorheol. Microcirc. 2011;49:137–149. doi: 10.3233/CH-2011-1464.
    1. Chang E.H. An Introduction to Contrast-Enhanced Ultrasound for Nephrologists. Nephron. 2018;138:176–185. doi: 10.1159/000484635.
    1. Hu C., Feng Y., Huang P., Jin J. Adverse Reactions after the Use of SonoVue Contrast Agent: Characteristics and Nursing Care Experience. Medicine. 2019;98:e17745. doi: 10.1097/MD.0000000000017745.
    1. Yusuf G.T., Sellars M.E., Deganello A., Cosgrove D.O., Sidhu P.S. Retrospective Analysis of the Safety and Cost Implications of Pediatric Contrast-Enhanced Ultrasound at a Single Center. Am. J. Roentgenol. 2017;208:446–452. doi: 10.2214/AJR.16.16700.
    1. Sidhu P., Cantisani V., Dietrich C., Gilja O., Saftoiu A., Bartels E., Bertolotto M., Calliada F., Clevert D.-A., Cosgrove D., et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound (CEUS) in Non-Hepatic Applications: Update 2017 (Short Version) Ultraschall Der Medizin Eur. J. Ultrasound. 2018;39:154–180. doi: 10.1055/s-0044-101254.
    1. Trimboli P., Castellana M., Virili C., Havre R.F., Bini F., Marinozzi F., D’Ambrosio F., Giorgino F., Giovanella L., Prosch H., et al. Performance of Contrast-Enhanced Ultrasound (CEUS) in Assessing Thyroid Nodules: A Systematic Review and Meta-Analysis Using Histological Standard of Reference. Radiol. Med. 2020;125:406–415. doi: 10.1007/s11547-019-01129-2.
    1. Zhan J., Ding H. Application of Contrast-Enhanced Ultrasound for Evaluation of Thyroid Nodules. Ultrasonography. 2018;37:288–297. doi: 10.14366/usg.18019.
    1. He Y., Wang X.Y., Hu Q., Chen X.X., Ling B., Wei H.M. Value of Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Imaging for the Differential Diagnosis of Benign and Malignant Thyroid Nodules. Front. Pharm. 2018;9:1363. doi: 10.3389/fphar.2018.01363.
    1. Jiao Z., Luo Y., Song Q., Yan L., Zhu Y., Xie F. Roles of Contrast-Enhanced Ultrasonography in Identifying Volume Change of Benign Thyroid Nodule and Optical Time of Secondary Radiofrequency Ablation. BMC Med. Imaging. 2020;20:79. doi: 10.1186/s12880-020-00476-1.
    1. Hong Y.-R., Yan C.-X., Mo G.-Q., Luo Z.-Y., Zhang Y., Wang Y., Huang P.-T. Conventional US, Elastography and Contrast Enhanced US Features of Papillary Thyroid Microcarcinoma Predict Central Compartment Lymph Node Metastases. Sci. Rep. 2015;5:7748. doi: 10.1038/srep07748.
    1. Piskunowicz M., Back S.J., Darge K., Humphries P.D., Jüngert J., Ključevšek D., Lorenz N., Mentzel H.-J., Squires J.H., Huang D.Y. Contrast-Enhanced Ultrasound of the Small Organs in Children. Pediatr. Radiol. 2021:1–16. doi: 10.1007/s00247-021-05006-x.
    1. Wang Y., Dong T., Nie F., Wang G., Liu T., Niu Q. Contrast-Enhanced Ultrasound in the Differential Diagnosis and Risk Stratification of ACR TI-RADS Category 4 and 5 Thyroid Nodules with Non-Hypovascular. Front. Oncol. 2021;11:662273. doi: 10.3389/fonc.2021.662273.
    1. Xu Y., Qi X., Zhao X., Ren W., Ding W. Clinical Diagnostic Value of Contrast-Enhanced Ultrasound and TI-RADS Classification for Benign and Malignant Thyroid Tumors: One Comparative Cohort Study. Medicine. 2019;98:e14051. doi: 10.1097/MD.0000000000014051.
    1. Jiang J., Shang X., Wang H., Xu Y.-B., Gao Y., Zhou Q. Diagnostic Value of Contrast-Enhanced Ultrasound in Thyroid Nodules with Calcification. Kaohsiung J. Med. Sci. 2015;31:138–144. doi: 10.1016/j.kjms.2014.12.001.
    1. Hu Y., Li P., Jiang S., Li F. Quantitative Analysis of Suspicious Thyroid Nodules by Contrast-Enhanced Ultrasonography. Int. J. Clin. Exp. Med. 2015;8:11786–11793.
    1. Yuan Z., Quan J., Yunxiao Z., Jian C., Zhu H. Contrast-Enhanced Ultrasound in the Diagnosis of Solitary Thyroid Nodules. J. Cancer Res. Ther. 2015;11:41–45. doi: 10.4103/0973-1482.147382.
    1. Zhang Y., Zhang M., Luo Y., Li J., Wang Z., Tang J. The Value of Peripheral Enhancement Pattern for Diagnosing Thyroid Cancer Using Contrast-Enhanced Ultrasound. Int. J. Endocrinol. 2018;2018:1–7. doi: 10.1155/2018/1625958.
    1. Li X., Gao F., Li F., Han X., Shao S., Yao M., Li C., Zheng J., Wu R., Du L. Qualitative Analysis of Contrast-Enhanced Ultrasound in the Diagnosis of Small, TR3–5 Benign and Malignant Thyroid Nodules Measuring ≤1 cm. Br. J. Radiol. 2020;93:20190923. doi: 10.1259/bjr.20190923.
    1. Chen H.Y., Liu W.Y., Zhu H., Jiang D.W., Wang D.H., Chen Y., Li W., Pan G. Diagnostic Value of Contrast-Enhanced Ultrasound in Papillary Thyroid Microcarcinoma. Exp. Ther. Med. 2016;11:1555–1562. doi: 10.3892/etm.2016.3094.
    1. Yang L., Zhao H., He Y., Zhu X., Yue C., Luo Y., Ma B. Contrast-Enhanced Ultrasound in the Differential Diagnosis of Primary Thyroid Lymphoma and Nodular Hashimoto’s Thyroiditis in a Background of Heterogeneous Parenchyma. Front. Oncol. 2021;10:2861. doi: 10.3389/fonc.2020.597975.
    1. Cantisani V., Bertolotto M., Weskott H.P., Romanini L., Grazhdani H., Passamonti M., Drudi F.M., Malpassini F., Isidori A., Meloni F.M., et al. Growing Indications for CEUS: The Kidney, Testis, Lymph Nodes, Thyroid, Prostate, and Small Bowel. Eur. J. Radiol. 2015;84:1675–1684. doi: 10.1016/j.ejrad.2015.05.008.
    1. Paefgen V., Doleschel D., Kiessling F. Evolution of Contrast Agents for Ultrasound Imaging and Ultrasound-Mediated Drug Delivery. Front. Pharmacol. 2015;6:197. doi: 10.3389/fphar.2015.00197.
    1. Dietrich C., Averkiou M., Nielsen M., Barr R., Burns P., Calliada F., Cantisani V., Choi B., Chammas M., Clevert D.-A., et al. How to Perform Contrast-Enhanced Ultrasound (CEUS) Ultrasound Int. Open. 2018;4:E2–E15. doi: 10.1055/s-0043-123931.
    1. Baun J. Contrast-Enhanced Ultrasound: A Technology Primer. J. Diagn. Med. Sonogr. 2017;33:446–452. doi: 10.1177/8756479317715221.
    1. Sano F., Uemura H. The Utility and Limitations of Contrast-Enhanced Ultrasound for the Diagnosis and Treatment of Prostate Cancer. Sensors. 2015;15:4947–4957. doi: 10.3390/s150304947.
    1. Necas M., Keating J., Abbott G., Curtis N., Ryke R., Hill G. How to set-up and perform contrast-enhanced ultrasound. Australas. J. Ultrasound Med. 2019;22:86–95. doi: 10.1002/ajum.12135.
    1. Giusti M., Orlandi D., Melle G., Massa B., Silvestri E., Minuto F., Turtulici G. Is There a Real Diagnostic Impact of Elastosonography and Contrast-Enhanced Ultrasonography in the Management of Thyroid Nodules? J. Zhejiang Univ. Sci. B. 2013;14:195–206. doi: 10.1631/jzus.B1200106.
    1. Hornung M., Jung E.M., Georgieva M., Schlitt H.J., Stroszczynski C., Agha A. Detection of Microvascularization of Thyroid Carcinomas Using Linear High Resolution Contrast-Enhanced Ultrasonography (CEUS) Clin. Hemorheol. Microcirc. 2012;52:197–203. doi: 10.3233/CH-2012-1597.
    1. Jiang J., Shang X., Zhang H., Ma W., Xu Y., Zhou Q., Gao Y., Yu S., Qi Y. Correlation Between Maximum Intensity and Microvessel Density for Differentiation of Malignant from Benign Thyroid Nodules on Contrast-Enhanced Sonography. J. Ultrasound Med. 2014;33:1257–1263. doi: 10.7863/ultra.33.7.1257.
    1. Ma B., Jin Y., Suntdar P.S., Zhao H., Jiang Y., Zhou J. Contrast-Enhanced Ultrasonography Findings for Papillary Thyroid Carcinoma and Its Pathological Bases. Sichuan Da Xue Xue Bao Yi Xue Ban. 2014;45:997–1000.
    1. Nemec U., Nemec S.F., Novotny C., Weber M., Czerny C., Krestan C.R. Quantitative Evaluation of Contrast-Enhanced Ultrasound after Intravenous Administration of a Microbubble Contrast Agent for Differentiation of Benign and Malignant Thyroid Nodules: Assessment of Diagnostic Accuracy. Eur. Radiol. 2012;22:1357–1365. doi: 10.1007/s00330-012-2385-6.
    1. Cantisani V., Consorti F., Guerrisi A., Guerrisi I., Ricci P., Segni M.D., Mancuso E., Scardella L., Milazzo F., D’Ambrosio F., et al. Prospective Comparative Evaluation of Quantitative-Elastosonography (Q-Elastography) and Contrast-Enhanced Ultrasound for the Evaluation of Thyroid Nodules: Preliminary Experience. Eur. J. Radiol. 2013;82:1892–1898. doi: 10.1016/j.ejrad.2013.07.005.
    1. Wu Q., Wang Y., Li Y., Hu B., He Z.-Y. Diagnostic Value of Contrast-Enhanced Ultrasound in Solid Thyroid Nodules with and without Enhancement. Endocrine. 2016;53:480–488. doi: 10.1007/s12020-015-0850-0.
    1. Ma X., Zhang B., Ling W., Liu R., Jia H., Zhu F., Wang M., Liu H., Huang J., Liu L. Contrast-enhanced Sonography for the Identification of Benign and Malignant Thyroid Nodules: Systematic Review and Meta-analysis. J. Clin. Ultrasound. 2016;44:199–209. doi: 10.1002/jcu.22311.
    1. Zhang B., Jiang Y.-X., Liu J.-B., Yang M., Dai Q., Zhu Q.-L., Gao P. Utility of Contrast-Enhanced Ultrasound for Evaluation of Thyroid Nodules. Thyroid. 2010;20:51–57. doi: 10.1089/thy.2009.0045.
    1. Zhao H., Liu X., Lei B., Cheng P., Li J., Wu Y., Ma Z., Wei F., Su H. Diagnostic Performance of Thyroid Imaging Reporting and Data System (TI-RADS) Alone and in Combination with Contrast-Enhanced Ultrasonography for the Characterization of Thyroid Nodules. Clin. Hemorheol. Microcirc. 2019;72:95–106. doi: 10.3233/CH-180457.
    1. Zhang Y., Zhou P., Tian S.-M., Zhao Y.-F., Li J.-L., Li L. Usefulness of Combined Use of Contrast-Enhanced Ultrasound and TI-RADS Classification for the Differentiation of Benign from Malignant Lesions of Thyroid Nodules. Eur. Radiol. 2017;27:1527–1536. doi: 10.1007/s00330-016-4508-y.
    1. Zhou X., Zhou P., Hu Z., Tian S.M., Zhao Y., Liu W., Jin Q. Diagnostic Efficiency of Quantitative Contrast-Enhanced Ultrasound Indicators for Discriminating Benign from Malignant Solid Thyroid Nodules. J. Ultrasound Med. 2018;37:425–437. doi: 10.1002/jum.14347.
    1. Li F., Zhang J., Wang Y., Liu L. Clinical Value of Elasticity Imaging and Contrast-Enhanced Ultrasound in the Diagnosis of Papillary Thyroid Microcarcinoma. Oncol. Lett. 2015;10:1371–1377. doi: 10.3892/ol.2015.3387.
    1. Deng J., Zhou P., Tian S., Zhang L., Li J., Qian Y. Comparison of Diagnostic Efficacy of Contrast-Enhanced Ultrasound, Acoustic Radiation Force Impulse Imaging, and Their Combined Use in Differentiating Focal Solid Thyroid Nodules. PLoS ONE. 2014;9:e90674. doi: 10.1371/journal.pone.0090674.
    1. Sui X., Liu H.-J., Jia H.-L., Fang Q.-M. Contrast-Enhanced Ultrasound and Real-Time Elastography in the Differential Diagnosis of Malignant and Benign Thyroid Nodules. Exp. Ther. Med. 2016;12:783–791. doi: 10.3892/etm.2016.3344.
    1. Hang J., Li F., Qiao X., Ye X., Li A., Du L. Combination of Maximum Shear Wave Elasticity Modulus and TIRADS Improves the Diagnostic Specificity in Characterizing Thyroid Nodules: A Retrospective Study. Int. J. Endocrinol. 2018;2018:1–8. doi: 10.1155/2018/4923050.
    1. Cosgrove D., Barr R., Bojunga J., Cantisani V., Chammas M.C., Dighe M., Vinayak S., Xu J.-M., Dietrich C.F. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4—Thyroid. Ultrasound Med. Biol. 2017;43:4–26. doi: 10.1016/j.ultrasmedbio.2016.06.022.
    1. Wang Y., Nie F., Liu T., Yang D., Li Q., Li J., Song A. Revised Value of Contrast-Enhanced Ultrasound for Solid Hypo-Echoic Thyroid Nodules Graded with the Thyroid Imaging Reporting and Data System. Ultrasound Med. Biol. 2018;44:930–940. doi: 10.1016/j.ultrasmedbio.2017.12.018.
    1. Liu Y., Wu H., Zhou Q., Gou J., Xu J., Liu Y., Chen Q. Diagnostic Value of Conventional Ultrasonography Combined with Contrast-Enhanced Ultrasonography in Thyroid Imaging Reporting and Data System (TI-RADS) 3 and 4 Thyroid Micronodules. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016;22:3086–3094. doi: 10.12659/MSM.897011.
    1. Xu L., Gao J., Wang Q., Yin J., Yu P., Bai B., Pei R., Chen D., Yang G., Wang S., et al. Computer-Aided Diagnosis Systems in Diagnosing Malignant Thyroid Nodules on Ultrasonography: A Systematic Review and Meta-Analysis. Eur. Thyroid J. 2020;9:186–193. doi: 10.1159/000504390.
    1. Yu D., Han Y., Chen T. Contrast-Enhanced Ultrasound for Differentiation of Benign and Malignant Thyroid Lesions. Otolaryngol. Head Neck Surg. 2014;151:909–915. doi: 10.1177/0194599814555838.
    1. Sun B., Lang L., Zhu X., Jiang F., Hong Y., He L. Accuracy of Contrast-Enhanced Ultrasound in the Identification of Thyroid Nodules: A Meta-Analysis. Int. J. Clin. Exp. Med. 2015;8:12882–12889.
    1. Zhang J., Zhang X., Meng Y., Chen Y. Contrast-Enhanced Ultrasound for the Differential Diagnosis of Thyroid Nodules: An Updated Meta-Analysis with Comprehensive Heterogeneity Analysis. PLoS ONE. 2020;15:e0231775. doi: 10.1371/journal.pone.0231775.
    1. Mulita F., Anjum F. Thyroid Adenoma. StatPearls 4AD; Treasure Island, FL, USA: 2021.
    1. Yoon J.H., Kim E.-K., Youk J.H., Moon H.J., Kwak J.Y. Better Understanding in the Differentiation of Thyroid Follicular Adenoma, Follicular Carcinoma, and Follicular Variant of Papillary Carcinoma: A Retrospective Study. Int. J. Endocrinol. 2014;2014:1–9. doi: 10.1155/2014/321595.
    1. Duggal R., Rajwanshi A., Gupta N., Vasishta R.K. Interobserver Variability amongst Cytopathologists and Histopathologists in the Diagnosis of Neoplastic Follicular Patterned Lesions of Thyroid. Diagn. Cytopathol. 2011;39:235–241. doi: 10.1002/dc.21363.
    1. Schleder S., Janke M., Agha A., Schacherer D., Hornung M., Schlitt H.J., Stroszczynski C., Schreyer A.G., Jung E.M. Preoperative Differentiation of Thyroid Adenomas and Thyroid Carcinomas Using High Resolution Contrast-Enhanced Ultrasound (CEUS) Clin. Hemorheol. Microcirc. 2015;61:13–22. doi: 10.3233/CH-141848.
    1. Hegedüs L. Thyroid ultrasound. Endocrin. Metab. Clin. 2001;30:339–360. doi: 10.1016/S0889-8529(05)70190-0.
    1. Teng W., Shan Z., Teng X., Guan H., Li Y., Teng D., Jin Y., Yu X., Fan C., Chong W., et al. Effect of Iodine Intake on Thyroid Diseases in China. N. Engl. J. Med. 2006;354:2783–2793. doi: 10.1056/NEJMoa054022.
    1. Ragusa F., Fallahi P., Elia G., Gonnella D., Paparo S.R., Giusti C., Churilov L.P., Ferrari S.M., Antonelli A. Hashimotos’ Thyroiditis: Epidemiology, Pathogenesis, Clinic and Therapy. Best Pract. Res. Clin. Endocrinol. 2019;33:101367. doi: 10.1016/j.beem.2019.101367.
    1. Walsh S., Lowery A.J., Evoy D., McDermott E.W., Prichard R.S. Thyroid Lymphoma: Recent Advances in Diagnosis and Optimal Management Strategies. Oncologist. 2013;18:994–1003. doi: 10.1634/theoncologist.2013-0036.
    1. Zhao R., Zhang B., Yang X., Jiang Y., Lai X., Zhu S., Zhang X. Diagnostic Value of Contrast-Enhanced Ultrasound of Thyroid Nodules Coexisting with Hashimoto’s Thyroiditis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Acad. Med. Sin. 2015;37:66–70. doi: 10.3881/j.issn.1000-503x.2015.01.012.
    1. Wei X., Li Y., Zhang S., Li X., Gao M. Evaluation of Primary Thyroid Lymphoma by Ultrasonography Combined with Contrast-Enhanced Ultrasonography: A Pilot Study. Indian J. Cancer. 2015;52:546–550. doi: 10.4103/0019-509x.178419.
    1. Moon H.J., Kwak J.Y., Kim M.J., Son E.J., Kim E.-K. Can Vascularity at Power Doppler US Help Predict Thyroid Malignancy? Radiology. 2010;255:260–269. doi: 10.1148/radiol.09091284.
    1. Ito Y., Miyauchi A., Kihara M., Fukushima M., Higashiyama T., Miya A. Overall Survival of Papillary Thyroid Carcinoma Patients: A Single-Institution Long-Term Follow-Up of 5897 Patients. World J. Surg. 2018;42:615–622. doi: 10.1007/s00268-018-4479-z.
    1. LiVolsi V.A. Papillary Thyroid Carcinoma: An Update. Mod. Pathol. 2011;24((Suppl. S2)):S1–S9. doi: 10.1038/modpathol.2010.129.
    1. Gao L., Xi X., Gao Q., Tang J., Yang X., Zhu S., Zhao R., Lai X., Zhang X., Zhang B., et al. Blood-Rich Enhancement in Ultrasonography Predicts Worse Prognosis in Patients with Papillary Thyroid Cancer. Front. Oncol. 2021;10:546378. doi: 10.3389/fonc.2020.546378.
    1. Zhou Q., Jiang J., Shang X., Zhang H.-L., Ma W.-Q., Xu Y.-B., Wang H., Li M. Correlation of Contrast-Enhanced Ultrasonographic Features with Microvessel Density in Papillary Thyroid Carcinomas. Asian Pac. J. Cancer Prev. 2014;15:7449–7452. doi: 10.7314/APJCP.2014.15.17.7449.
    1. Zhan J., Diao X.-H., Chen Y., Wang W.-P., Ding H. Homogeneity Parameter in Contrast-Enhanced Ultrasound Imaging Improves the Classification of Abnormal Cervical Lymph Node after Thyroidectomy in Patients with Papillary Thyroid Carcinoma. Biomed. Res. Int. 2019;2019:1–8. doi: 10.1155/2019/9296010.
    1. Crea C.D., Raffaelli M., Sessa L., Ronti S., Fadda G., Bellantone C., Lombardi C.P. Actual Incidence and Clinical Behaviour of Follicular Thyroid Carcinoma: An Institutional Experience. Sci. World J. 2014;2014:952095. doi: 10.1155/2014/952095.
    1. Su D.-H., Chang T.-C., Chang S.-H. Prognostic Factors on Outcomes of Follicular Thyroid Cancer. J. Formos. Med. Assoc. 2019;118:1144–1153. doi: 10.1016/j.jfma.2018.11.010.
    1. Sharma C. Diagnostic Accuracy of Fine Needle Aspiration Cytology of Thyroid and Evaluation of Discordant Cases. J. Egypt Natl. Cancer Inst. 2015;27:147–153. doi: 10.1016/j.jnci.2015.06.001.
    1. Yang G.C.H., Fried K.O. Most Thyroid Cancers Detected by Sonography Lack Intranodular Vascularity on Color Doppler Imaging: Review of the Literature and Sonographic-Pathologic Correlations for 698 Thyroid Neoplasms. J. Ultrasound Med. 2017;36:89–94. doi: 10.7863/ultra.16.03043.
    1. Iared W., Shigueoka D.C., Cristófoli J.C., Andriolo R., Atallah A.N., Ajzen S.A., Valente O. Use of Color Doppler Ultrasonography for the Prediction of Malignancy in Follicular Thyroid Neoplasms. J. Ultrasound Med. 2010;29:419–425. doi: 10.7863/jum.2010.29.3.419.
    1. Somnay Y., Schneider D., Mazeh H. Thyroid: Medullary Carcinoma. Atlas Genet. Cytogenet. Oncol. Haematol. 2013;17:291–296. doi: 10.4267/2042/48876.
    1. Gambardella C., Offi C., Patrone R., Clarizia G., Mauriello C., Tartaglia E., Capua F.D., Martino S.D., Romano R.M., Fiore L., et al. Calcitonin Negative Medullary Thyroid Carcinoma: A Challenging Diagnosis or a Medical Dilemma? BMC Endocr. Disord. 2019;19((Suppl. S1)):45. doi: 10.1186/s12902-019-0367-2.
    1. Simões-Pereira J., Bugalho M.J., Limbert E., Leite V. Retrospective Analysis of 140 Cases of Medullary Thyroid Carcinoma Followed-up in a Single Institution. Oncol. Lett. 2016;11:3870–3874. doi: 10.3892/ol.2016.4482.
    1. Proiti M., Andreano A., Schiaffino S., Turtulici G., Laeseke P., Meloni M. Contrast-Enhanced Ultrasound of Anaplastic Thyroid Cancer: A Case Report and Review of the Literature. Ultrasound Int. Open. 2015;1:E27–E29. doi: 10.1055/s-0035-1554658.
    1. Nagaiah G., Hossain A., Mooney C.J., Parmentier J., Remick S.C. Anaplastic Thyroid Cancer: A Review of Epidemiology, Pathogenesis, and Treatment. J. Oncol. 2011;2011:542358. doi: 10.1155/2011/542358.
    1. Bernardi S., Giudici F., Cesareo R., Antonelli G., Cavallaro M., Deandrea M., Giusti M., Mormile A., Negro R., Palermo A., et al. Five-Year Results of Radiofrequency and Laser Ablation of Benign Thyroid Nodules: A Multicenter Study from the Italian Minimally Invasive Treatments of the Thyroid Group. Thyroid. 2020;30:1759–1770. doi: 10.1089/thy.2020.0202.
    1. Mauri G., Gennaro N., Lee M.K., Baek J.H. Laser and Radiofrequency Ablations for Benign and Malignant Thyroid Tumors. Int. J. Hyperther. 2019;36:13–20. doi: 10.1080/02656736.2019.1622795.
    1. Teng D.-K., Li W.-H., Du J.-R., Wang H., Yang D.-Y., Wu X.-L. Effects of Microwave Ablation on Papillary Thyroid Microcarcinoma: A Five-Year Follow-up Report. Thyroid. 2020;30:1752–1758. doi: 10.1089/thy.2020.0049.
    1. Yan J., Qiu T., Lu J., Wu Y., Yang Y. Microwave Ablation Induces a Lower Systemic Stress Response in Patients than Open Surgery for Treatment of Benign Thyroid Nodules. Int. J. Hyperther. 2018;34:1–5. doi: 10.1080/02656736.2018.1427286.
    1. Trimboli P., Pelloni F., Bini F., Marinozzi F., Giovanella L. High-Intensity Focused Ultrasound (HIFU) for Benign Thyroid Nodules: 2-Year Follow-up Results. Endocrine. 2019;65:312–317. doi: 10.1007/s12020-019-01909-w.
    1. Monpeyssen H., Hamou A.B., Hegedus L., Ghanassia E., Juttet P., Persichetti A., Bizzarri G., Bianchini A., Guglielmi R., Raggiunti B., et al. High-Intensity Focused Ultrasound (HIFU) Therapy for Benign Thyroid Nodules: A 3-Year Retrospective Multicenter Follow-up Study. Int. J. Hyperther. 2020;37:1301–1309. doi: 10.1080/02656736.2020.1846795.
    1. Kim Y.J., Baek J.H., Ha E.J., Lim H.K., Lee J.H., Sung J.Y., Kim J.K., Kim T.Y., Kim W.B., Shong Y.K. Cystic versus Predominantly Cystic Thyroid Nodules: Efficacy of Ethanol Ablation and Analysis of Related Factors. Eur. Radiol. 2012;22:1573–1578. doi: 10.1007/s00330-012-2406-5.
    1. Papini E., Monpeyssen H., Frasoldati A., Hegedüs L. 2020 European Thyroid Association Clinical Practice Guideline for the Use of Image-Guided Ablation in Benign Thyroid Nodules. Eur. Thyroid J. 2020;9:172–185. doi: 10.1159/000508484.
    1. Schiaffino S., Serpi F., Rossi D., Ferrara V., Buonomenna C., Alì M., Monfardini L., Sconfienza L.M., Mauri G. Reproducibility of Ablated Volume Measurement Is Higher with Contrast-Enhanced Ultrasound than with B-Mode Ultrasound after Benign Thyroid Nodule Radiofrequency Ablation—A Preliminary Study. J. Clin. Med. 2020;9:1504. doi: 10.3390/jcm9051504.
    1. Yan L., Luo Y., Xiao J., Lin L. Non-Enhanced Ultrasound Is Not a Satisfactory Modality for Measuring Necrotic Ablated Volume after Radiofrequency Ablation of Benign Thyroid Nodules: A Comparison with Contrast-Enhanced Ultrasound. Eur. Radiol. 2021;31:3226–3236. doi: 10.1007/s00330-020-07398-0.
    1. Bernardi S., Palermo A., Grasso R.F., Fabris B., Stacul F., Cesareo R. Current Status and Challenges of US-Guided Radiofrequency Ablation of Thyroid Nodules in the Long Term: A Systematic Review. Cancers. 2021;13:2746. doi: 10.3390/cancers13112746.
    1. Xi X., Gao L., Wu Q., Fang S., Xu J., Liu R., Yang X., Zhu S., Zhao R., Lai X., et al. Differentiation of Thyroid Nodules Difficult to Diagnose with Contrast-Enhanced Ultrasonography and Real-Time Elastography. Front. Oncol. 2020;10:112. doi: 10.3389/fonc.2020.00112.
    1. Chen M., Zhang K.-Q., Xu Y.-F., Zhang S.-M., Cao Y., Sun W.-Q. Shear Wave Elastography and Contrast-Enhanced Ultrasonography in the Diagnosis of Thyroid Malignant Nodules. Mol. Clin. Oncol. 2016;5:724–730. doi: 10.3892/mco.2016.1053.
    1. Peng S., Liu Y., Lv W., Liu L., Zhou Q., Yang H., Ren J., Liu G., Wang X., Zhang X., et al. Deep Learning-Based Artificial Intelligence Model to Assist Thyroid Nodule Diagnosis and Management: A Multicentre Diagnostic Study. Lancet Digit. Health. 2021;3:e250–e259. doi: 10.1016/S2589-7500(21)00041-8.
    1. Buda M., Wildman-Tobriner B., Hoang J.K., Thayer D., Tessler F.N., Middleton W.D., Mazurowski M.A. Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists. Radiology. 2019;292:181343. doi: 10.1148/radiol.2019181343.
    1. Wu G.-G., Lv W.-Z., Yin R., Xu J.-W., Yan Y.-J., Chen R.-X., Wang J.-Y., Zhang B., Cui X.-W., Dietrich C.F. Deep Learning Based on ACR TI-RADS Can Improve the Differential Diagnosis of Thyroid Nodules. Front. Oncol. 2021;11:575166. doi: 10.3389/fonc.2021.575166.

Source: PubMed

3
S'abonner