Interictal quantitative EEG in migraine: a blinded controlled study

Marte Helene Bjørk, Lars J Stovner, Morten Engstrøm, Marit Stjern, Knut Hagen, Trond Sand, Marte Helene Bjørk, Lars J Stovner, Morten Engstrøm, Marit Stjern, Knut Hagen, Trond Sand

Abstract

Abnormal electroencephalography (EEG) in migraineurs has been reported in several studies. However, few have evaluated EEG findings in migraineurs during a time period when neither the last attack nor the next attack may interact with the results. We, therefore, compared interictal EEG in migraineurs and headache-free subjects with a design controlled for interference by pre-ictal changes. Pre-ictal EEG findings in the painful cranial side during the next attack after registration were also investigated. Correlations between clinical variables and EEG are reported as well. Interictal EEGs from 33 migraineurs (6 with and 27 without aura) and 31 controls were compared. Absolute power, asymmetry and relative power were studied for delta, theta and alpha frequency bands in parieto-occipital, temporal and fronto-central areas. EEG variables were correlated to attack frequency, headache duration, attack duration, pain intensity, photo- and phonophobia. Compared with controls, migraineurs had increased relative theta power in all cortical regions and increased delta activity in the painful fronto-central region. Absolute power and asymmetry were similar among groups. In age-adjusted analyses, headache intensity correlated with increased delta activity. In this blinded controlled study, we found globally increased relative theta activity in migraineurs. A slight interictal brain dysfunction is probably present between attacks.

Figures

Fig. 1
Fig. 1
Interictal relative theta power was increased in migraine in the fronto-central (left box, p = 0.06), parieto-occipital (middle box, p = 0.045) and temporal region (right box, p = 0.037) (Mann–Whitney U test)
Fig. 2
Fig. 2
Larger fronto-central delta power in migraineurs than in controls is observed on the symptomatic side compared to the pain-free side (S − NS difference; Mann–Whitney U test, p = 0.005). S and NS have been selected randomly in the control group. Two outliers are not shown (but included in the statistical analysis)
Fig. 3
Fig. 3
Linear regression lines are shown for fronto-central (open circles, solid line), parieto-occipital (triangles, broken line) and temporal (inverted triangles, dotted line) delta power (log-transformed y-axis)

References

    1. Bigal ME, Ferrari M, Silberstein SD, Lipton RB, Goadsby PJ. Migraine in the triptan era: lessons from epidemiology, pathophysiology, and clinical science. Headache. 2009;49(Suppl 1):S21–S33. doi: 10.1111/j.1526-4610.2008.01336.x.
    1. Vingen JV, Pareja JA, Storen O, White LR, Stovner LJ. Phonophobia in migraine. Cephalalgia. 1998;18(5):243–249. doi: 10.1046/j.1468-2982.1998.1805243.x.
    1. Silberstein SD. Migraine symptoms: results of a survey of self-reported migraineurs. Headache. 1995;35(7):387–396. doi: 10.1111/j.1526-4610.1995.hed3507387.x.
    1. Vingen JV, Sand T, Stovner LJ. Sensitivity to various stimuli in primary headaches: a questionnaire study. Headache. 1999;39(8):552–558. doi: 10.1046/j.1526-4610.1999.3908552.x.
    1. Blau JN, Solomon F. Smell and other sensory disturbances in migraine. J Neurol. 1985;232(5):275–276. doi: 10.1007/BF00313864.
    1. Vanagaite J, Pareja JA, Storen O, White LR, Sand T, Stovner LJ. Light-induced discomfort and pain in migraine. Cephalalgia. 1997;17(7):733–741. doi: 10.1046/j.1468-2982.1997.1707733.x.
    1. Weiller C, May A, Limmroth V, Jüptner M, Kaube H, Schayck RV, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–660. doi: 10.1038/nm0795-658.
    1. Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ. Brainstem activation specific to migraine headache. Lancet. 2001;357(9261):1016–1017. doi: 10.1016/S0140-6736(00)04250-1.
    1. Kaube H, Katsarava Z, Przywara S, Drepper J, Ellrich J, Diener HC. Acute migraine headache: possible sensitization of neurons in the spinal trigeminal nucleus? Neurology. 2002;58(8):1234–1238.
    1. Schoenen J, Wang W, Albert A, Delwaide PJ. Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks. Eur J Neurol. 1995;2:115–122.
    1. Coppola G, Vandenheede M, Di Clemente L, Ambrosini A, Fumal A, Pasqua V, et al. Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain. 2005;128(Pt 1):98–103.
    1. Bille BS. Migraine in school children. A study of the incidence and short-term prognosis, and a clinical, psychological and electroencephalographic comparison between children with migraine and matched controls. Acta Paediatr Suppl. 1962;51(Suppl 136):1–151.
    1. Giel R, Vlieger M, Vliet AG. Headache and the EEG. Electroencephalogr Clin Neurophysiol. 1966;21(5):492–495. doi: 10.1016/0013-4694(66)90198-2.
    1. Whitehouse D, Pappas JA, Escala PH, Livingston S. Electroencephalographic changes in children with migraine. N Engl J Med. 1967;276(1):23–27. doi: 10.1056/NEJM196701052760104.
    1. Rowan AJ. The electroencephalographic characteristics of migraine. Arch Neurobiol (Madr) 1974;37(Suppl):95–113.
    1. Gronseth GS, Greenberg MK. The utility of the electroencephalogram in the evaluation of patients presenting with headache: a review of the literature. Neurology. 1995;45(7):1263–1267.
    1. Sand T. EEG in migraine: a review of the literature. Funct Neurol. 1991;6(1):7–22.
    1. Schoenen J. Clinical neurophysiology studies in headache: a review of data and pathophysiological hints. Funct Neurol. 1992;40(4):191–204.
    1. Sand T. Electroencephalography in migraine: a review with focus on quantitative electroencephalography and the migraine vs. epilepsy relationship. Cephalalgia. 2003;23(Suppl 1):5–11. doi: 10.1046/j.1468-2982.2003.00570.x.
    1. Farkas V, Benninger C, Matthis P, Scheffner D, Lindeisz F. The EEG background activity in children with migraine. Cephalalgia. 1987;6:59–64.
    1. Neufeld MY, Treves TA, Korczyn AD. EEG and topographic frequency analysis in common and classic migraine. Headache. 1991;31(4):232–236. doi: 10.1111/j.1526-4610.1991.hed3104232.x.
    1. Lia C, Carenini L, Degioz C, Bottachi E. Computerized EEG analysis in migraine patients. Ital J Neurol Sci. 1995;16(4):249–254. doi: 10.1007/BF02282996.
    1. Bramanti P, Grugno R, Vitetta A, Di Bella P, Muscara N, Nappi G. Migraine with and without aura: electrophysiological and functional neuroimaging evidence. Funct Neurol. 2005;20(1):29–32.
    1. Genco S, Tommaso M, Prudenzano AM, Savarese M, Puca FM. EEG features in juvenile migraine: topographic analysis of spontaneous and visual evoked brain electrical activity: a comparison with adult migraine. Cephalalgia. 1994;14(1):41–46. doi: 10.1046/j.1468-2982.1994.1401041.x.
    1. Jonkman EJ, Lelieveld MH. EEG computer analysis in patients with migraine. Electroencephalogr Clin Neurophysiol. 1981;52(6):652–655. doi: 10.1016/0013-4694(81)91440-1.
    1. Rainero I, Amanzio M, Vighetti S, Bergamasco B, Pinessi L, Benedetti F. Quantitative EEG responses to ischaemic arm stress in migraine. Cephalalgia. 2001;21(3):224–229. doi: 10.1046/j.1468-2982.2001.00209.x.
    1. Vonderheid-Guth B, Todorova A, Wedekind W, Dimpfel W. Evidence for neuronal dysfunction in migraine: concurrence between specific qEEG findings and clinical drug response—a retrospective analysis. Eur J Med Res. 2000;5(11):473–483.
    1. Facchetti D, Marsile C, Faggi L, Donati E, Kokodoko A, Poloni M. Cerebral mapping in subjects suffering from migraine with aura. Cephalalgia. 1990;10(6):279–284. doi: 10.1046/j.1468-2982.1990.1006279.x.
    1. Bjork M, Sand T. Quantitative EEG power and asymmetry increase 36 h before a migraine attack. Cephalalgia. 2008;28(9):960–968. doi: 10.1111/j.1468-2982.2008.01638.x.
    1. Sand T, Zhitniy N, Nilsen KB, Helde G, Hagen K, Stovner LJ. Thermal pain thresholds are decreased in the migraine preattack phase. Eur J Neurol. 2008;15(11):1199–1205. doi: 10.1111/j.1468-1331.2008.02276.x.
    1. Sand T, Vingen JV. Visual, long-latency auditory and brainstem auditory evoked potentials in migraine: relation to pattern size, stimulus intensity, sound and light discomfort thresholds and pre-attack state. Cephalalgia. 2000;20(9):804–820. doi: 10.1046/j.1468-2982.2000.00098.x.
    1. Judit A, Sandor PS, Schoenen J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia. 2000;20(8):714–719.
    1. Fritzer G, Strenge H, Goder R, Gerber WD, Aldenhoff J. Changes in cortical dynamics in the preictal stage of a migraine attack. J Clin Neurophysiol. 2004;21(2):99–104. doi: 10.1097/00004691-200403000-00004.
    1. Kropp P, Gerber WD. Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neurosci Lett. 1998;257(2):73–76. doi: 10.1016/S0304-3940(98)00811-8.
    1. Siniatchkin M, Gerber WD, Kropp P, Vein A. How the brain anticipates an attack: a study of neurophysiological periodicity in migraine. Funct Neurol. 1999;14(2):69–77.
    1. Bowyer SM, Aurora KS, Moran JE, Tepley N, Welch KM. Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann Neurol. 2001;50(5):582–587. doi: 10.1002/ana.1293.
    1. Sand T, Zhitniy N, White LR, Stovner LJ. Brainstem auditory-evoked potential habituation and intensity-dependence related to serotonin metabolism in migraine: a longitudinal study. Clin Neurophysiol. 2008;119(5):1190–1200. doi: 10.1016/j.clinph.2008.01.007.
    1. Sand T, Zhitniy N, White LR, Stovner LJ. Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin Neurophysiol. 2008;119(5):1020–1027. doi: 10.1016/j.clinph.2008.01.009.
    1. Kruit MC, Launer LJ, Buchem MA, Terwindt GM, Ferrari MD. MRI findings in migraine. Rev Neurol. 2005;128(Pt 9):661–665.
    1. Kruit MC, Buchem MA, Hofman PA, Bakkers JT, Terwindt GM, Ferrari MD, et al. Migraine as a risk factor for subclinical brain lesions. JAMA. 2004;291(4):427–434. doi: 10.1001/jama.291.4.427.
    1. Kruit MC, Launer LJ, Ferrari MD, Buchem MA. Brain stem and cerebellar hyperintense lesions in migraine. Stroke. 2006;37(4):1109–1112. doi: 10.1161/01.STR.0000206446.26702.e9.
    1. Kruit MC, Launer LJ, Ferrari MD, Buchem MA. Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study. Brain. 2005;128(Pt 9):2068–2077. doi: 10.1093/brain/awh542.
    1. Rozen TD. Vanishing cerebellar infarcts in a migraine patient. Cephalalgia. 2007;27(6):557–560. doi: 10.1111/j.1468-2982.2007.01317.x.
    1. Valfre W, Rainero I, Bergui M, Pinessi L. Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache. 2008;48(1):109–117.
    1. Rocca MA, Ceccarelli A, Falini A, Colombo B, Tortorella P, Bernasconi L, et al. Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke. 2006;37(7):1765–1770. doi: 10.1161/01.STR.0000226589.00599.4d.
    1. Finnigan SP, Walsh M, Rose SE, Chalk JB. Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clin Neurophysiol. 2007;118(11):2525–2532. doi: 10.1016/j.clinph.2007.07.021.
    1. Cohen BA, Bravo-Fernandez EJ, Sances A., Jr Quantification of computer analyzed serial EEGs from stroke patients. Electroencephalogr Clin Neurophysiol. 1976;41(4):379–386. doi: 10.1016/0013-4694(76)90100-0.
    1. Nuwer MR, Jordan SE, Ahn SS. Evaluation of stroke using EEG frequency analysis and topographic mapping. Neurology. 1987;37(7):1153–1159.
    1. Headache Classification Committee of the International Headache Society Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia. 2004;24(Suppl 1):1–160.
    1. Bjork MH, Stovner LJ, Nilsen BM, Stjern M, Hagen K, Sand T. The occipital alpha rhythm related to the “migraine cycle” and headache burden: a blinded, controlled longitudinal study. Clin Neurophysiol. 2009;120(3):464–471. doi: 10.1016/j.clinph.2008.11.018.
    1. Clemens B, Bank J, Piros P, Bessenyei M, Veto S, Toth M, et al. Three-dimensional localization of abnormal EEG activity in migraine: a low resolution electromagnetic tomography (LORETA) study of migraine patients in the pain-free interval. Brain Topogr. 2008;21(1):36–42. doi: 10.1007/s10548-008-0061-6.
    1. Hughes JR, Robbins LD. Brain mapping in migraine. Clin Electroencephalogr. 1990;21(1):14–24.
    1. Klimesch W, Freunberger R, Sauseng P, Gruber W. A short review of slow phase synchronization and memory: evidence for control processes in different memory systems? Brain Res. 2008;1235:31–44. doi: 10.1016/j.brainres.2008.06.049.
    1. Steriade M, Gloor P, Linas R, Lopes da Silva F, Mesulam MM. Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol. 1990;76(76):481–508.
    1. Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325–340. doi: 10.1016/S0896-6273(02)00586-X.
    1. Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience. 1997;81(4):893–926. doi: 10.1016/S0306-4522(97)00239-X.
    1. McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol. 1992;39(4):337–388. doi: 10.1016/0301-0082(92)90012-4.
    1. Ingvar DH, Sjolund B, Ardo A. Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Electroencephalogr Clin Neurophysiol. 1976;41(3):268–276. doi: 10.1016/0013-4694(76)90119-X.
    1. Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA. 1999;96(26):15222–15227. doi: 10.1073/pnas.96.26.15222.
    1. Tai C, Kuzmiski JB, MacVicar BA. Muscarinic enhancement of R-type calcium currents in hippocampal CA1 pyramidal neurons. J Neurosci. 2006;26(23):6249–6258. doi: 10.1523/JNEUROSCI.1009-06.2006.
    1. Crunelli V, Cope DW, Hughes SW. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium. 2006;40(2):175–190. doi: 10.1016/j.ceca.2006.04.022.
    1. Schmitz N, Arkink EB, Mulder M, Rubia K, Admiraal-Behloul F, Schoonman GG, et al. Frontal lobe structure and executive function in migraine patients. Neurosci Lett. 2008;440(2):92–96. doi: 10.1016/j.neulet.2008.05.033.
    1. Thomsen LL, Oestergaard E, Bjornsson A, Stefansson H, Fasquel AC, Gulcher J, et al. Screen for CACNA1A and ATP1A2 mutations in sporadic hemiplegic migraine patients. Cephalalgia. 2008;28(9):914–921. doi: 10.1111/j.1468-2982.2008.01599.x.
    1. Jen JC, Kim GW, Dudding KA, Baloh RW. No mutations in CACNA1A and ATP1A2 in probands with common types of migraine. Arch Neurol. 2004;61(6):926–928. doi: 10.1001/archneur.61.6.926.
    1. Schoenen J, Jamart B, Delwaide PJ. Cartographie electroencephalographique dans les migraines en periodes critique et intercritique. Rev Electroencephalogr Neurophysiol Clin. 1987;17(3):289–299. doi: 10.1016/S0370-4475(87)80066-7.
    1. Tommaso M, Sciruicchio V, Guido M, Sasanelli G, Specchio LM, Puca FM. EEG spectral analysis in migraine without aura attacks. Cephalalgia. 1998;18(6):324–328. doi: 10.1046/j.1468-2982.1998.1806324.x.
    1. Fritzer G, Strenge H, Göder R, Gerber WD, Aldenhoff J. Changes in cortical dynamics in the preictal stage of a migraine attack. J Clin Neurophysiol. 2004;21(2):99–104. doi: 10.1097/00004691-200403000-00004.
    1. Gloor P, Ball G, Schaul N. Brain lesions that produce delta waves in the EEG. Neurology. 1977;27(4):326–333.
    1. Rocca MA, Ceccarelli A, Falini A, Tortorella P, Colombo B, Pagani E, et al. Diffusion tensor magnetic resonance imaging at 3.0 T shows subtle cerebral grey matter abnormalities in patients with migraine. J Neurol Neurosurg Psychiatry. 2006;77(5):686–689. doi: 10.1136/jnnp.2005.080002.
    1. Schmitz N, Admiraal-Behloul F, Arkink EB, Kruit MC, Schoonman GG, Ferrari MD, et al. Attack frequency and disease duration as indicators for brain damage in migraine. Headache. 2008;48(7):1044–1055. doi: 10.1111/j.1526-4610.2008.01133.x.
    1. Waldie KE, Hausmann M, Milne BJ, Poulton R. Migraine and cognitive function: a life-course study. Neurology. 2002;59(6):904–908.
    1. Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging. 2002;17(1):85–100. doi: 10.1037/0882-7974.17.1.85.
    1. Salinsky MC, Oken BS, Storzbach D, Dodrill CB. Assessment of CNS effects of antiepileptic drugs by using quantitative EEG measures. Epilepsia. 2003;44(8):1042–1050. doi: 10.1046/j.1528-1157.2003.60602.x.
    1. Clemens B, Menes A, Piros P, Bessenyei M, Altmann A, Jerney J, et al. Quantitative EEG effects of carbamazepine, oxcarbazepine, valproate, lamotrigine, and possible clinical relevance of the findings. Epilepsy Res. 2006;70(2–3):190–199. doi: 10.1016/j.eplepsyres.2006.05.003.
    1. Perneger TV. What’s wrong with Bonferroni adjustments. BMJ. 1998;316(7139):1236–1238.
    1. Feise RJ. Do multiple outcome measures require p value adjustment? BMC Med Res Methodol. 2002;2:8. doi: 10.1186/1471-2288-2-8.
    1. Schulz KF, Grimes DA. Multiplicity in randomised trials I: endpoints and treatments. Lancet. 2005;365(9470):1591–1595. doi: 10.1016/S0140-6736(05)66461-6.

Source: PubMed

3
S'abonner